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Do Pretrained Language Models Indeed Understand
Software Engineering Tasks?

Yao Li , Tao Zhang , Senior Member, IEEE, Xiapu Luo , Haipeng Cai , Senior Member, IEEE,
Sen Fang , and Dawei Yuan

Abstract—Artificial intelligence (AI) for software engineering
(SE) tasks has recently achieved promising performance. In this
article, we investigate to what extent the pre-trained language
model truly understands those SE tasks such as code search,
code summarization, etc. We conduct a comprehensive empirical
study on a board set of AI for SE (AI4SE) tasks by feeding
them with variant inputs: 1) with various masking rates and 2)
with sufficient input subset method. Then, the trained models
are evaluated on different SE tasks, including code search,
code summarization, and duplicate bug report detection. Our
experimental results show that pre-trained language models
are insensitive to the given input, thus they achieve similar
performance in these three SE tasks. We refer to this phenomenon
as overinterpretation, where a model confidently makes a decision
without salient features, or where a model finds some irrelevant
relationships between the final decision and the dataset. Our
study investigates two approaches to mitigate the overinterpre-
tation phenomenon: whole word mask strategy and ensembling.
To the best of our knowledge, we are the first to reveal this
overinterpretation phenomenon to the AI4SE community, which
is an important reminder for researchers to design the input for
the models and calls for necessary future work in understanding
and implementing AI4SE tasks.

Index Terms—Overinterpretation, deep learning, pre-trained
language model, software engineering.

I. INTRODUCTION

G IVEN the great potential of artificial intelligence, ap-
plying AI for software engineering gains encouraging

results in software quality [1], [2], software development [3],
[4], and software project management [5], [6]. Despite early
successes, AI4SE suffers fundamental explainability problems
for its performance [7]. The major reason is that the inside
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of the neural model is still as mysterious as a black box for
researchers. To reveal the nature of AI, recent studies explore
controlled empirical studies by specifically targeting on one
task. For example, Qu et al. [8] conduct an extensive empirical
study to evaluate network embedding algorithms in bug predic-
tion. Different from all previous empirical studies in AI4SE, our
empirical study focuses on the impact of input variations on
pre-trained language models (PLMs) applied to AI4SE tasks.
Specifically, we use a masking strategy or a sufficient subset
of inputs (SIS) algorithm to control the inputs of the model for
observing the model performance. Therefore, the design of our
empirical study is under the hyperthesis that different keywords
(unmasked) lead the trained model to achieve different levels
of performance. Surprisingly, our experimental results show
that by varying masking rate from 15% and 80%, the neural
models archive similar results. For example, with 80% masking
rate, Bidirectional Encoder Representations from Transformers
(BERT) [9] still learns good pre-trained representations and
keep more than 90% of the performance on downstream tasks.
We call this phenomenon “overinterpretation”.

Overinterpretation is a type of deep learning (DL) model
failure, where a model confidently makes a decision without
salient features (e.g., keywords), or where a model makes a
prediction by utilizing some irrelevant relationships between
the final decision and the dataset (i.e., classifying images by
background pixels). However, overinterpretation can easily be
misleading. Because it looks like the model can even work un-
der bad conditions. For example, the model can classify images
in which only 10% of the pixels are retained, and the highly
sparse, unmodified subsets of pixels in images suffice for image
classifiers to make the same predictions as on the full images
[10]. Meanwhile, we have found this phenomenon in SE tasks.
Fig. 1 depicts examples of masking 15%, 40%, and 80%, as
well their downstream task performance. With 80% masking
rate, BERT still learns good representations and keeps more
than 90% of the performance on downstream tasks. Even in just
40% masking rate, we can no longer understand the meaning
of the sentence, but the model still makes accurate judgments.
Fig. 2 presents an example of SE task, i.e., code search. The
query displayed in Fig. 2 is partially obscured, with only a few
letters visible, namely “L”, “the”, and “ON”. These individual
characters do not contain key information that would be readily
interpretable by a human, making it challenging to obtain useful
information through their combination. However, remarkably,
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TABLE I
THE OVERVIEW OF RQS AND FINDINGS

RQ Task & Methodology Finding
Do software engineering tasks (code search,
code summarization, and duplicate bug report
detection) suffer from overinterpretation?

Code search, code summarization, duplicate
bug report detection: Masking & SIS

Software engineering tasks suffer from overinterpre-
tation.

Does overinterpretation depend on software en-
gineering tasks and how prevalent is overinter-
pretation in PLMs?

GPT, BERT, XLNet: Masking & SIS
Overinterpretation is not dependent on software en-
gineering tasks and is also prevalent in pre-trained
language models.

What is the impact of overinterpretation? What
are the challenges in mitigating overinterpreta-
tion in general and how to mitigate overinterpre-
tation?

Whole word masking & Ensembling
The main challenge is that overinterpretation is more
difficult to detect. Whole word masking and ensem-
bling can mitigate overinterpretation.

Fig. 1. Performance of PLMs under different masking rates. “MR” means
masking rate. Different mask rate leads to similar performance in the four
considered metrics.

the model is still able to find the corresponding code snippet
successfully. This example vividly demonstrates the model’s
tendency to overinterpret and make accurate predictions even
when presented with limited or seemingly meaningless input.
Despite the masked characters lacking any meaningful inter-
pretation from a human standpoint, the model leverages its
underlying statistical learning capabilities to derive meaningful
patterns and associations. As a result, the model is capable
of producing comparable results to those obtained with the
complete query. This highlights the model’s ability to go beyond
human understanding and uncover latent patterns that might
not be apparent to us. However, it also raises concerns about
the potential for overreliance on statistical associations and
the possibility of making interpretations that may not align
with human reasoning. Given that the DL models in the above
examples which have such remarkable success in SE tasks, it is
natural to ask why they perform so well, after the inputs have
been masked, what kinds of features these models are learning,
and whether they can understand features, i.e., can they indeed
understand SE tasks?

To answer these questions, the key point is the input fea-
tures. The features used by the model are derived from the
dataset. However, dataset has implicit biases and unique statis-
tical signals that are often introduced during the dataset gen-
eration/solidification/labeling process [11]. These biases and
statistical signals often allow DL models to achieve high

Fig. 2. A code search example after the query is masked. Blue block
indicates masking.

accuracy in test data by learning highly specific features unique
to that dataset rather than generalizable features or key features
under human understanding. For example, Ribeiro et al. [12]
describe an example of a classifier that classifies wolves and
huskies. They find that the classier predicts “Wolf” if there is
snow (or light background at the bottom), and “Husky” oth-
erwise, regardless of animal color, position, pose, etc. Biases
in the dataset and unique statistical signals are learned by the
model and cause overinterpretation [11].

In this article, we conduct the first comprehensive empirical
study on the overinterpretation of PLMs applied in the SE tasks.
Our study contains two parts, task-oriented and model-oriented.
In the task-oriented part, we study three SE tasks, code search
[13], [14], code summarization [15], [16], and duplicate bug
report detection [17], [18]. These tasks are not only widely used
in software development and maintenance, but also encompass
language processing techniques such as natural language (NL)
to programming language (PL) translation, PL to NL trans-
lation, and NL classification. In the model-oriented part, we
study three famous PLMs, Generative Pre-Training (GPT) [19],
BERT [9], and XLNet [20]. These PLMs are widely used in
various tasks. The purpose of this study is to provide a sys-
temic and generalized understanding of the overinterpretation
of PLMs, which could improve model architecture and solve
potential issues such as misclassification, low generalization,
etc. To experiment with our method, we adopt the method of
Wettig et al. [21] to re-pre-train the model. All models are
trained from scratch. We set three research questions (RQ) to
verify the overinterpretation. The RQs and findings in the article
are shown in Table I. We describe them in details as following
subsections.
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A. SE Tasks Analysis

To better investigate the models in the SE tasks, we analyze
three SE tasks, code search, code summarization, and duplicate
bug report detection. With the support of representative studies,
our analysis is driven by the following research question:

RQ 1:

Do software engineering tasks (code search, code sum-
marization, and duplicate bug report detection) suffer
from overinterpretation?

1) Code Search: The basic principle of code search is to
accept full queries and find the correct code snippets. How-
ever, our analysis results show that PLMs [13], [14] can still
find the corresponding code snippets after entering a masked
query (even masking 80% of the query) or SIS (a sparse set of
unrelated characters). The masked query and SIS retain only
meaningless letters or non-essential words. However, models
make accurate decisions based on these confusing letters. For
details, please refer to Section V-A.

2) Code Summarization: Despite multiple publications
proposing new code summarization methods [22], [23], [24],
we do not find an analysis of overinterpretation. Therefore, we
analyze several approaches [15], [16] to investigate whether
they overinterpret the dataset.

The investigation results show that, despite the lack of in-
put code (masking strategy and SIS), these studies [15], [16]
are able to accurately generate the corresponding summaries.
However, the input that remains is unrelated and confusing,
and cannot be understood from a human perspective. For more
details, please refer to Section V-B.

3) Duplicate Bug Report Detection: Capturing and tagging
duplicate bug reports is crucial to avoid the assignment of
the same bug to different developers. We design a variety of
experiments to study and analyze some studies [17], [18].

We use three different masking strategies (15% masking
rate, 40% masking rate, 80% masking rate) and SIS to train
these two models [17], [18] separately. When lacks most of
the content of the description tag, the model can still detect
the duplicate report. The retained descriptions are unreadable
and meaningless, much less containing salient features. For the
details, please refer to Section V-C.

B. PLMs Analysis

To demonstrate that overinterpretation is not task-dependent
and is prevalent in pre-trained language models, we choose
three representative PLMs (GPT, BERT, and XLNet) for
evaluation.

RQ 2:

Does overinterpretation depend on software engineer-
ing tasks and how prevalent is overinterpretation in
PLMs?

We find that PLMs [9], [19], [20] can still make accurate
decisions under conditions where most of the data and salient
features are missing (by using masking strategies and SIS).
Overinterpretation not only depends on SE-related tasks but
is also prevalent in PLMs. For the details, please refer to
Section VI.

C. Impact Analysis and Mitigation

Overinterpretation is a potential pitfall. It suggests that the
pre-trained language model learns not the salient features in the
dataset, such as some keywords in the text. Instead, it learns
statistical signals that are unique to the data. Thus, in this article,
we are interested in exploring what the hindrances to alleviate
this flaw are and how to mitigate overinterpretation.

RQ 3:

What is the impact of overinterpretation? What are the
challenges in mitigating overinterpretation in general
and how to mitigate overinterpretation?

There are three main challenges. First, overinterpretation is
not well understood and studied at present. Meanwhile, overin-
terpretation can be misleading. Second, overinterpretation is not
easily detected. Overinterpretation may come from real statisti-
cal signals in the distribution of the underlying dataset. Finally,
the pre-trained language model is a black-box model. Moreover,
we find two ways to mitigate overinterpretation through exper-
iments, whole word mask and ensembling. These two methods
can enrich the dataset used by the model. For the details, please
refer to Section VII.

D. Contributions

In summary, this article makes the following contributions:
• We perform the first comprehensive study on the over-

interpretation of pre-trained language models in SE.
We demonstrate that PLMs in SE suffers from overinter-
pretation.

• We design two schemes to reveal overinterpretation. One is
a different masking rate scheme and the other is a sufficient
input subset scheme.

• We find two ways to mitigate overinterpretation, whole
word mask strategy and ensembling. These two methods
can enrich model learning to mitigate overinterpretation.

The rest of this article is organized as follows. In
Section II, we give an overview of PLMs, AI4SE tasks, and
overinterpretation. Section III describes the study methodology
and Section IV describes datasets and experimental setup.
Sections V and VI present the analysis of the overinterpretation
in SE tasks and PLMs. Section VII introduces the impact
of overinterpretation and mitigation measures. Section VIII
describes the threats to validity. We survey related work in
Section IX and conclude this article in Section X.
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II. BACKGROUND

A. PLMs

Pre-training has always been an effective strategy to learn
the parameters of deep neural networks, which are then fine-
tuning on downstream tasks. As early as 2006, the breakthrough
of deep learning came with greedy layer-wise unsupervised
pre-training followed by supervised fine-tuning [25]. In natural
language processing (NLP), PLMs on large corpus have been
proven to be beneficial for the downstream NLP tasks. With the
development of computers, PLMs change a lot, from shallow
word embedding to deep neural networks.

Language modeling (LM) objectives for pre-training mainly
fall into two categories: (1) autoregressive language modeling,
where the model is trained to predict the next token based on
the previous context:

L(C) = Ex∈C

[∑
xi∈x

log p (xi|x1, x2, . . . , xi−1)

]
(1)

where C is a pre-training corpus and x is a sampled sequence
from C. (2) De-noising auto-encoding, where the model is
trained to restore a corrupted input sequence. In particular,
masked language models (MLMs) [26], [27] mask a subset of
input tokens and predict them based on the remaining context:

L(C) = Ex∈CEM⊂x, |M|=m|x|

[ ∑
xi∈M

log p
(
xi

∣∣∣∼x)
]

(2)

where a mask m (masking rate, typically 15%) percentage of
tokens from the original sentence x and predicts the masked
tokens M given the corrupted context x (the masked version
of x).

Different masking strategies have been proposed to sample
M : Devlin et al. [9] randomly choose from the input tokens with
a uniform distribution; Joshi et al. [28] sample contiguous spans
of text; Levine et al. [29] sample words and spans with high
Pointwise Mutual Information (PMI). These advanced sampling
strategies prevent models from exploiting shallow local cues
from uniform masking and lead to efficient pre-training. MLMs
can encode bidirectional context while autoregressive language
models can only “look at the past”, and thus MLMs are shown
to be more effective at learning contextualized representations
for downstream tasks [9]. On the other hand, MLMs suffer a
significant computational cost because it only learns from 15%
of the tokens per sequence, whereas autoregressive LMs predict
every token in a sequence.

B. AI4SE Tasks

Human life depends on reliable software; therefore, the soft-
ware production process (i.e., software design [30], develop-
ment [4], and maintenance [31]) becomes one of the most
important factors to ensure the quality of software. With the
increase in the complexity of software, how to improve the
performance and efficiency of software production has become
a challenge for software developers and researchers. To address
this challenge, researchers have used information retrieval and

DL technologies to implement a series of automated tools.
These tools can solve SE tasks, such as code search, code
summarization, and duplicate bug report detection.

Code search [13], [32], [33], [34], [35] is frequently used by
developers to conveniently find relevant code snippets. McMil-
lan et al. [36] propose a code search engine that combines
keyword matching with PageRank to return a chain of func-
tions. Lv et al. [35] propose CodeHow, a code search tool that
incorporates an extended Boolean model and API matching.
Ponzanelli et al. [37] propose an approach that automatically
retrieves pertinent discussions from Stack Overflow given a
context in the integrated development environment (IDE). Code
summarization automatically generates high-quality text to help
developers understand the program. Sridhara et al. [22] gen-
erate a code summary for the Java method from its method
call and signature using the NLP techniques. Software Word
Usage Model has been built for software analysis using NLP by
Pollock et al. [23]. Fowkes et al. [24] design an unsupervised,
extractive source code summarization system using an auto-
folding method. Programmers fix bugs based on bug reports.
BM25F [38] calculates the similarity between two bug reports
based on common words shared between the bug reports. REP
[39] extends BM25F by also considering bug report attribute in-
formation (e.g., product, priority). Deshmukh et al. [40] propose
a deep learning-based approach (i.e., DLDBR), which mainly
relies on the textual feature to detect duplicate bug reports. Our
study is different from the above work. We study some tasks in
program comprehension to demonstrate the overinterpretation
in them.

More and more AI-based schemes have been proposed to
solve traditional SE tasks [4], [30], [41]. However, previous
studies analyze the impact of different programming languages
and antipatterns on program understanding [41], [42], [43], as
well as investigated the positive impact of dynamic analysis on
program comprehension [44], [45]. Moreover, researchers have
studied sub-tasks of program understanding to help improve
efficiency, such as code search [46], code summarization [47],
and duplicate bug report detection [48], etc.

C. Overinterpretation

Overinterpretation is a serious issue in black-box models. We
define model overinterpretation to occur when a model finds
strong class evidence in input that contains no semantically
salient features. Overinterpretation is related to overfitting, but
overfitting can be diagnosed via reduced test accuracy [10].
Overinterpretation may stem from real statistical signals in
the distribution of the underlying data set that happen to be
generated by specific properties of the data source. Thus, over-
interpretation is harder to be diagnosed as it admits decisions
that are made by statistically valid criteria, and models that
use such criteria can excel at benchmarks. Meanwhile, PLMs
always require a large dataset to train and fine-tune. Datasets
always contain implicit biases and unique statistical signals.
These biases and statistical signals often allow DL models to
achieve high accuracy in test data by learning highly specific
features unique to that dataset rather than generalizable features
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Fig. 3. Flow of analysis in this study. Step ①, we process the raw data using the masking strategy and the SIS algorithm. Step ②, the models are trained
using the processed data and the original data, respectively. Step ③, the three types of models and the features they use are compared and analyzed.

or key features under human understanding [11]. However,
these non-distinctive features are beyond human comprehen-
sion. They may be a series of unrelated characters or sparse
pixels, and are not the features that we consider to be capable
of making critical decisions. Although the outward appearance
of this phenomenon can be surprising, as the model still works
under bad conditions. But the model learns not problem-based
features but dataset-based features. This can make the model
less generalizable. Understanding overinterpretation is signifi-
cant for improving model quality. Moreover, it can also provide
guidance for designing the architecture of models.

III. METHODOLOGY

A. Overview

Revealing overinterpretation requires a systematic way to
identify which features are used by a model to reach its de-
cision. In this study, to comprehensively examine whether pre-
trained language models are overinterpreted, we propose two
evaluation methods. One is to use multiple different masking
rates to train the model. The other is to train the model using
SIS. As shown in Fig. 3, our study consists of three main steps:
1) we use two methods to process the dataset. One is the
masking rate strategy which masks the dataset with different
degrees, and the other is to extract sufficient input subsets
using the SIS algorithm; 2) we train the PLM using the masked
dataset and SIS separately; 3) we use multiple evaluation
metrics to comprehensively evaluate and compare the models,
and analyze the corresponding datasets. To experiment with
our method, all models are trained from scratch. we re-pre-
train models using SIS and MR methods and fine-tune them
on the downstream tasks. We adopt the method used by Wettig
et al. [21]. Downstream task development performance of large
models trained with the efficient pre-training recipe, under dif-
ferent masking rates. To ensure the integrity of our model and
minimize any potential confounding factors, we employed the
exact same parameters as the original model. In addition, we
extensively refer to relevant articles and open-source codes of

the models used in this article to ensure a robust and reliable
training process. It is important to note that all the models
we use in our research are open-sourced with their respective
source codes and articles. The data underlying this article are
available at our repository.

B. Different Masking Rate Strategies

The emergence of pre-trained models has made the training
of large models easy. However, a masking strategy is intro-
duced to perform sufficient representation learning during pre-
training. It increases the learning difficulty of the model to some
extent even though the model is more generalizable.

In this study, we set three masking rates, 15% masking rate,
40% masking rate, and 80% masking rate. In addition to using
the 15% masking rate to train the model, we also use the
40% and 80% masking rates to train the model. A series of
experiments are conducted to compare the differences between
the classifiers trained with each masking rate. As the masking
rate increases, the more corpus is masked, the more difficult
it becomes for humans to understand its meaning. The perfor-
mance of the PLM does not change much when the masking
rate is increased from 15% to 80% (the evaluation metric stays
within 10% for both improvement and decrease). This fact in-
dicates that the large reduction in input data has little impact on
the effectiveness of the PLM. Meanwhile, as the masking rate
increases, the utterance contains less information and becomes
more difficult to understand. When the masking rate reaches
40%, humans can no longer understand the meaning of the
original sentence correctly. Thus, PLMs can learn information
from unrelated or even meaningless words or letters to make the
final decision. This fact proves that pre-trained language models
overinterpret the data.

C. Sufficient Input Subset

The idea of SIS has been proposed to help humans interpret
the decisions of black-box models [49]. An SIS subset is a min-
imal subset of features that suffices to yield a class probability
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above a certain threshold with all other features masked. One
simple explanation about why a particular black-box decision
is reached may be obtained via a sparse subset of the input
features whose values form the basis for the model’s decision —
a rationale.

The SIS rationalizes why reaching a particular black-box de-
cision only applies to input instances x that satisfy the decision
criterion f(x)>m. For such an input x, we aim to identify
an SIS-collection of disjoint feature subsets that satisfy the
following criteria:

• f (XSn
)≥ τ for each n = 1, ..., N

• There exists no feature subset S
′ ⊂ Sn for some n=

1, ..., N such that f (XS′ )≥ τ

• f (XR)< τ for R = [p] \
⋃N

n=1 SN (the remaining fea-
tures outside of the SIS-collection)

Criterion (1) ensures that for any SIS (Sn), in the absence of
any other features, the features in that subset alone are sufficient
to justify the decision. Criterion (2) ensures that each SIS that
reaches a decision contains a minimum number of features.
Criterion (3) no longer reaches the same decision on the input
after the entire SIS set is masked.

Thus, we perform the SIS algorithm to extract the subset of
corpus and then train the corresponding model. By comparing
the selected evaluation metrics, we consider the extracted SIS
to be valid if the model trained using SIS is similar to the
model trained using the full dataset. Then, we analyze the SIS to
determine whether humans can understand the meaning of the
SIS. If the SIS is not meaningful, it indicates that the model
suffers from overinterpretation. For the SIS algorithm used in
this article, we refer to the method of [49] by Carter et al. Their
source code and parameters can be found on GitHub.

IV. EXPERIMENTAL SETUP

To ensure the authenticity of the experiments, all models use
the default settings and the datasets are the same as those used
in the original work. All the work investigated in the article has
public datasets and source code. The source code and dataset
of code search tasks are provided by the previous studies [13],
[14]. We can find code summarization’s source code and dataset
in the literatures [15], [16]. Duplicate bug report detection task’s
code and dataset are in the following studies [17], [18]. The
code snippets of PLMs can be found in the following studies
[9], [19], [20]. The evaluation indicators in this article are the
same as in the original work. All experiments are done on
the same machine. We run our experiments on single NVIDIA
Geforce 3090Ti GPU, Intel (R) Xeon(R) 2.60GHz 16 CPU.
To comprehensively demonstrate the overinterpretation of the
PLMs, we design two types of experiments. For the details,
please refer to Sections V and VI.

V. TASK-ORIENTED OVERINTERPRETATION ANALYSIS

We study some AI4SE tasks and reveal the overinterpreta-
tion in these tasks. We choose three tasks, code search [13],
[14], code summarization [15], [16], and duplicate bug report
detection [17], [18]. These tasks are not only widely used in
software development and maintenance, but also encompass

TABLE II
OVERALL ACCURACY OF DEEPCS UNDER DIFFERENT MASKING RATES.

‘‘MR’’ MEANS MASKING RATE, AND ‘‘0%’’ INDICATES THE ABSENCE OF

ANY MASKING STRATEGY

Pre-training Metrics
MR R@1 R@5 R@10 P@1 P@5 P@10 MRR
0% 0.51 0.82 0.89 0.49 0.51 0.48 0.61
15% 0.48 0.76 0.85 0.48 0.47 0.46 0.60
40% 0.47 0.75 0.82 0.46 0.44 0.45 0.59
80% 0.42 0.69 0.77 0.41 0.42 0.43 0.53

language processing techniques such as NL to PL translation,
PL to NL translation, and NL classification. For each task,
two representative studies are selected and their models are
evaluated to detect the presence of overinterpretation. The next
sections describe these experiments in detail.

RQ 1:

Do software engineering tasks (code search, code sum-
marization, and duplicate bug report detection) suffer
from overinterpretation?

A. Code Search

Code search is a frequent activity in software development.
To implement a program functionality, developers can reuse
previously written code snippets by searching through a large-
scale codebase. Over the years, many code search tools have
been proposed to help developers such as DeepCS [13] and
CodeBERT [14], both of which use deep learning models to
conduct code search.

DeepCS is a novel code search tool using deep embed-
ding neural networks. Instead of matching textual similari-
ties, DeepCS co-embeds code snippets and natural language
descriptions into a high-dimensional vector space, and then
performs searches based on the vectors. They empirically eval-
uate DeepCS on a large-scale codebase collected from GitHub.
The experimental results show that the method can effectively
retrieve relevant code snippets and outperforms previous tech-
niques. CodeBERT is a bimodal pre-trained model for a pro-
gramming language and natural language. Authors evaluate
CodeBERT on two NL-PL applications by fine-tuning model
parameters. Results show that CodeBERT achieves state-of-the-
art performance on both natural language code search and code
documentation generation.

First, we train models using different masking rates,
15% masking rate, 40% masking rate, and 80% masking
rate. Four common metrics are used to measure the ef-
fectiveness of code search, namely, FRank [33], Success-
Rate@k [34], Precision@k [35], and Mean Reciprocal Rank
(MRR) [50]. They are widely used metrics in informa-
tion retrieval and code search literature. Table II shows the
performance of DeepCS under different masking rates. DeepCS
outperforms other models when training models using the full
dataset. But after using the masking rate strategy to train the
model, the performance of DeepCS decreases. Moreover, as
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TABLE III
OVERALL ACCURACY OF CODEBERT UNDER DIFFERENT MASKING

RATES. ‘‘MR’’ MEANS MASKING RATE, AND ‘‘0%’’ INDICATES THE

ABSENCE OF ANY MASKING STRATEGY

MR RUBY JAVASCRIPT GO PYTHON JAVA PHP
0% 0.69 0.71 0.84 0.86 0.74 0.70
15% 0.71 0.72 0.83 0.87 0.74 0.72
40% 0.74 0.70 0.85 0.88 0.75 0.71
80% 0.67 0.68 0.80 0.82 0.71 0.69

the masking rate increases, the performance of DeepCS grad-
ually decreases. When the model is trained with 80% masking
rate, DeepCS has the lowest performance, but the difference is
within 10% compared to the model trained with the complete
dataset. This fact demonstrates that DeepCS can learn enough
“knowledge” to make accurate judgments with most of the input
missing (at least 20% of the data is retained). “Knowledge”
refers to the real statistical signals in the dataset. Meanwhile,
the high masking rate means that it is difficult for humans to
understand masked sentences. We conduct the same experiment
with CodeBERT. Table III shows the performance of Code-
BERT. Unlike DeepCS, the performance of CodeBERT does
not decrease as the masking rate increases, but increases. This
result indicates that the performance of CodeBERT improves
as the input dataset is reduced. Moreover, CodeBERT can still
make accurate judgments when the masking rate is 80%, i.e.,
only 20% of the input data is retained. This suggests that the
above models do not learn the features in the dataset but the
statistical signals in the dataset.

Then, we use the SIS algorithm to extract a subset to train
DeepCS, and CodeBERT. Results are shown in Fig. 5(a) and
5(b). SIS is a subset of the complete dataset, which is sparse but
allows the model to make accurate decisions. To demonstrate
SIS in more detail, we show an example of code search, as
shown in Fig. 4. The original query is “Read a text file line
by line.” After applying the SIS algorithm, the extracted SIS
is shown, which includes the terms “red” and “lin”. It is im-
portant to note that the SIS is significantly different from the
original query in terms of its composition. For humans, the
salient features of the query are typically “read” and “line,” and
based on these words, humans can make certain inferences and
understand the context to search for a relevant code snippet.
However, when we consider the SIS, it becomes difficult for
humans to comprehend what the SIS represents, and it becomes
even more challenging to find the corresponding code snippet
based solely on the SIS. In contrast, a pre-trained language
model can still perform code search based on the SIS. Despite
the lack of human interpretability, the model can leverage the
subset of relevant terms in the SIS to accurately retrieve the
corresponding code fragment. This demonstrates the model’s
ability to utilize the subset of salient features, even when they
may not be easily understandable or interpretable from a human
perspective. This suggests that pre-trained language models do
not make decisions based on salient features, but learn statistical
signals unique to the dataset to make judgments. In the absence
of salient features, DeepCS and CodeBERT can still achieve
good performance. Therefore, the tasks related to code search
overinterpret the dataset.

Fig. 4. Example of SIS in the code search. The blue blocks mean the data
filtered out by the SIS algorithm.

Finding 1.1: Code search suffers from overinterpreta-
tion. PLMs trained in different ways have similar per-
formance, and these models are trained without salient
features.

B. Code Summarization

Generating a readable summary that describes the functional-
ity of a program is known as source code summarization which
can help developers understand and maintain software. In this
task, learning code representation by modeling the pairwise
relationship between code tokens to capture their long-range
dependencies is crucial. To learn code representation for sum-
marization, researchers have proposed many efficient methods
such as [15] and [16].

Ahmad et al. [15] explore the Transformer model that uses
a self-attention mechanism and has shown to be effective in
capturing long-range dependencies. The authors perform exper-
iments on two well-studied datasets, and the results endorse the
effectiveness.

Iyer et al. [16] present, CODE-NN, the first completely data-
driven approach for generating high-level summaries of source
code. Experiments outperform strong baselines.

We choose the above research studies to investigate whether
there is overinterpretation. The experimental results are shown
in Table IV. We evaluate the source code summarization per-
formance using three metrics, BLEU [51], METEOR [52], and
ROUGE-L [53]. The performance of Transformer-based shows
a pattern of increasing and then decreasing as the masking rate
increases. In addition, the 80% masking rate outperforms the
15% masking rate. This result shows that pre-trained language
models can make accurate decisions based on either the com-
plete dataset or only 20% of the dataset retained. It also proves
that not all data are useful for Transformer-based. CODE-NN’s
performance decreases as the masking rate increases. Although
each metric decreases, the difference in metrics is small (within
10%) compared to the model trained on the full dataset. CODE-
NN learns approximately for the dataset, regardless of the
amount of data contained in the dataset. With the loss of a
large amount of data, the CODE-NN can still make accurate
judgments, and the only remaining datasets are completely in-
comprehensible to humans. Fig. 6 shows an example of training
code summarization using the SIS. The left part shows the origi-
nal code snippet and the right part shows the subset extracted by
the SIS algorithm. In the context of code summarization, a code
fragment consists of several salient features, including class
names, function names, and more. These features play a crucial
role in indicating the purpose and functionality of the code.
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Fig. 5. The performance of SIS in the code search.

TABLE IV
OVERALL PERFORMANCE OF CODE SUMMARIZATION TASKS UNDER

DIFFERENT MASKING RATES. ‘‘MR’’ MEANS MASKING RATE, AND

‘‘0%’’ INDICATES THE ABSENCE OF ANY MASKING STRATEGY

Works
Pre-T Metrics
MR BLEU METEOR ROUGE-L

Transformer-based

0% 0.44 0.26 0.54
15% 0.45 0.25 0.55
40% 0.47 0.32 0.61
80% 0.46 0.28 0.57

CODE-NN

0% 0.25 0.17 0.56
15% 0.22 0.15 0.53
40% 0.21 0.13 0.51
80% 0.18 0.10 0.48

However, in the masked code snippet, the function names and
class names that are typically indicative of the code’s purpose
are masked, making it challenging for humans to comprehend
the function of the code snippet by solely reading the masked
code. Despite the lack of explicit salient features, PLMs are still
able to generate accurate code descriptions based on masked
code. This suggests that PLMs have learned to capture the
underlying patterns and relationships within the code, enabling
them to generate meaningful and accurate summaries even
when specific salient features are masked or absent. This finding
highlights the ability of PLMs to generalize and understand the
semantics of the code beyond relying solely on explicit salient
features. Humans cannot understand the function of this code
snippet by reading the masked code. But PLMs still generate
accurate code descriptions. Fig. 7(a) and 7(b) describes the
performance of the model after training with SIS. Although the
performance of both tasks decreased after training with SIS. But
the difference with the model trained using the full dataset is
small. The code summarization model can still achieve good
results in the absence of salient features. Therefore, there is an
overinterpretation of the code summarization task.

Finding 1.2: The model is able to generate accurate
summaries despite the absence of salient features. The
experimental results show that the model overinterpret
the dataset.

Fig. 6. Example of SIS in the code summarization. The blue blocks mean
the data filtered out by the SIS algorithm.

C. Duplicate Bug Report Detection

Bug report filing is a major part of software maintenance.
Developers rely on bug reports to fix bugs. Due to different
expression habits, different reporters may use different expres-
sions to describe the same bug in the bug tracking system. As
a result, the bug tracking system usually contains many du-
plicate bug reports. Automated duplicate detection can reduce
developers’ workload on fixing duplicate bugs. In other words,
capturing and tagging duplicate bug reports is crucial to avoid
the assignment of the same bug to different developers. Efforts
have been made in the past to detect duplicate bug reports by
using deep learning methods [17], [18].

Xiao et al. [17] present HINDBR, a novel deep neural
network (DNN) that accurately detects semantically similar
duplicate bug reports using a heterogeneous information net-
work (HIN). Results show that HINDBR is effective. Budhiraja
et al. [18] propose Deep Word Embedding Network (DWEN)
that uses a deep word embedding network for duplicate bug
report detection. DWEN computes the similarity between two
bug reports for duplicate bug report detection. Results show
that the proposed approach is able to perform better than
baselines.

Table V shows the metrics of both works under different
masking rates, 15% masking rate, 40% masking rate, and 80%
masking rate. To evaluate models, we use the following four
metrics, Accuracy, Precision, Recall, and F1-Score. When the
model is trained using the masking rate strategy, the perfor-
mance of the model starts to decrease. As the masking rate
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Fig. 7. The performance of code summarization under SIS.

TABLE V
OVERALL PERFORMANCE OF DUPLICATE BUG REPORT DETECTION

TASKS UNDER DIFFERENT MASKING RATES. ‘‘MR’’ MEANS MASKING

RATE, AND ‘‘0%’’ INDICATES THE ABSENCE OF ANY MASKING

STRATEGY

Works
Pre-T Metrics
MR Accuracy Precision Recall F1 Score

HINDBR

0% 0.96 0.91 0.88 0.87
15% 0.94 0.89 0.83 0.86
40% 0.92 0.86 0.80 0.84
80% 0.89 0.81 0.79 0.78

DWEN

0% 0.82 0.73 0.79 0.78
15% 0.80 0.70 0.76 0.77
40% 0.75 0.67 0.74 0.73
80% 0.74 0.65 0.70 0.68

increases, all the metrics of the model decrease. The effect of
the model is minimized when the masking rate reaches 80%.
However, the difference between all metrics and the original
model is maintained within 10%. This fact demonstrates that
HINDBR and DWEN cannot learn key representations from
the rich dataset. Fig. 8 displays an example of using SIS to
detect duplicate bug reports. The top part shows the complete
bug report, and the bottom part shows the bug report after
masking. Detecting duplicate bug reports relies on learning the
distinctive characteristics of a report based on its description.
However, in the masked bug report, a significant portion of
the content in the description tag is obscured or masked. This
makes it challenging for humans to understand the remaining
content in the description tag, as it appears to be meaningless
or lacks the necessary context. The observation highlights the
difficulty faced by humans in comprehending the masked bug
report and drawing connections or identifying similarities be-
tween different bug reports based on the available information.
However, it is worth noting that pre-trained language models,
which have been trained on large-scale data and have learned
to capture intricate patterns and relationships, can still utilize
masked information to accurately detect duplicate bug reports.
This example underscores the potential overinterpretation issue
in the task of duplicate bug report detection. While humans may
struggle to extract meaningful insights from the masked bug
report, pre-trained language models can leverage the available
information, even if it appears nonsensical to humans, to suc-
cessfully identify duplicate reports based on learned patterns

Fig. 8. Example of SIS in the duplicate bug report detection tasks. The blue
blocks mean the data filtered out by the SIS algorithm.

and correlations. Moreover, the results of the two schemes
using SIS detection are depicted in Fig. 9. Although all four
metrics decline for the model trained with SIS, the differ-
ence with the original model (the model trained with the full
dataset) stays within 10%. Thus, there is an overinterpreta-
tion phenomenon in the studies related to duplicate bug report
detection.

Finding 1.3: Lacking a salient part of the description,
the model can still find duplicate reports. The PLMs
in the duplicate bug report detection task suffers from
overinterpretation.

D. Analysis of SE Tasks

To understand whether the phenomenon of overinterpretation
is prevalent in AI4SE tasks, we choose three types of tasks
for our experiments, code search [13], [14], code summariza-
tion [15], [16], and duplicate bug report detection [17], [18].
Tables II–V present the results under different masking rates,
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Fig. 9. The performance of duplicate bug report detection tasks under SIS.

15% masking rate, 40% masking rate, and 80% masking rate.
First, in the software development phase, we analyze the code
search task. We use a variety of approaches to train DeepCS
and CodeBERT. Moreover, we present detailed examples to
describe the final data used for model decisions. The analysis
shows that the selected studies can find the right code snip-
pets in the absence of prominent representations. Second, code
summarization is the foundation of software maintenance. The
Transformer-based and CODE-NN can generate an accurate
summary based on the masked code snippet. Finally, in the
software maintenance phase, we compare two duplicate bug re-
port detection approaches. HINDBR and DWEN can accurately
detect duplicate bug reports after masking the content of the
description tag. Meanwhile, to more comprehensively assess
whether overinterpretation exists in the AI4SE task, we also
present examples for a more detailed description, as shown in
Figs. 4, 6, and 8. Finally, we show the performance of different
models after training with SIS in Figs. 5, 7, and 9. These ex-
perimental results all show that PLMs in SE tasks achieve high
performance despite the lack of salient features. However, these
inputs without salient features, are meaningless. It contains
only discrete letters and sparse words. Humans simply cannot
read the masked text, let alone understand its meaning. These
models do not really understand these SE tasks, but only learn
meaningless statistical signals. This is an overinterpretation
phenomenon of the SE tasks.

VI. MODEL-ORIENTED OVERINTERPRETATION ANALYSIS

RQ 2:

Does overinterpretation depend on software engineer-
ing tasks and how prevalent is overinterpretation in
PLMs?

For various tasks of SE, researchers not only construct their
models but also use well-known PLMs [9], [19], [20]. Pre-
trained models are beneficial for downstream NLP tasks and
can avoid training a new model from scratch. To demonstrate
that overinterpretation is not task-dependent but is prevalent
in pre-trained language models, we choose three representative
PLMs, GPT [19], BERT [9], and XLNet [20] for evaluation. We
perform the same training strategy for each model, i.e., different

masking rates (15% masking rate, 40% masking rate, and 80%
masking rate) and SIS. We evaluate them with diverse tasks, in-
cluding, multi-genre natural language inference corpus (MNLI)
[54], question-answering natural language inference (QNLI)
[55], recognizing textual entailment (RTE), corpus of linguistic
acceptability (CoLA) [56], the Stanford Sentiment Treebank
(SST-2) [57], the Microsoft Paraphrase corpus (MRPC) [58],
the Quora Question Pairs (QQP) [59], and the Semantic Textual
Similarity benchmark (STS-B) [60]. These downstream tasks
are widely used to evaluate PLMs.

A. GPT

The GPT [19] family is a series of very powerful pre-trained
language models proposed by OpenAI, which can achieve stun-
ning results in very complex tasks, such as article generation,
code generation, machine translation, etc., without the need
for supervised learning for model fine-tuning. In contrast to
previous approaches, they make use of task-aware input trans-
formations during fine-tuning to achieve effective transfer while
requiring minimal changes to the model architecture. For a new
task, GPT requires very little data to understand the require-
ments of the task and to approach or exceed the state-of-the-art
approach.

We conduct two types of experiments using the GPT model,
with different masking rates (15% masking rate, 40% masking
rate, and 80% masking rate) and SIS. Fig. 10 depicts the metrics
of GPT under different masking rates and SIS. In terms of
overall performance, the 15% masking rate performs the best
and achieves better results in all tasks. For the GPT model,
the best-performing task with a masking rate of 15% is SST-
2, which can achieve 92%; the worst-performing task is CoLA,
with 48%. On the other hand, the performance of the model
trained with 40% masking improves in most tasks, such as
the SST-2 task and the CoLA task. When the masking rate
is increased to 80%, most of the inputs have been masked,
and the performance of the model decreases somewhat, but not
significantly. Meanwhile, the results show that the performance
does not decrease but improves as the masking rate increases. In
the case of high masking rates, the GPT can still make effective
judgments, and the results do not differ much between different
masking rates. After training the model with SIS, the model
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Fig. 10. Performance of GPT under different masking rates and SIS. “Orange” represents the results of the SIS trained model, “Blue” represents the results
of the 15% masking rate trained model, and similarly, “Red” and “Gray” represent the results of 40% and 80% masking rate, respectively.

is still able to perform each task effectively, with results that
vary within 10% from the other models. This result proves the
effectiveness of the sufficient input subset algorithm. It also
indicates that the GPT model produces an overinterpretation
phenomenon of the input dataset. The data contained in the SIS
is extremely sparse, and some words are not associated at all.
Therefore, there is an overinterpretation phenomenon for the
dataset by using GPT.

B. BERT

In October 2018, Google AI published their BERT [9], a
pre-trained language representation model. It emphasizes that
BERT uses the new masked language model (MLM) so that
deep bidirectional language representations can be generated.
The pre-trained BERT model can be fine-tuned with just one
additional output layer to create state-of-the-art models for a
wide range of tasks, such as question answering and language
inference, without substantial task-specific architecture modifi-
cations.

Fig. 11 shows the results of BERT with different masking
rate strategies (15% masking rate, 40% masking rate, and 80%
masking rate) and SIS. As shown in Fig. 11, the graphs of the
15% masking rate strategy and the 40% masking rate strategy
are largely merged, and the graph of the 40% masking rate
masks the graph of the 15% masking rate. This result shows that
the performance of the model does not decrease with increasing
masking rate, but improves when applying 15% masking and
40% masking to the dataset. The performance of the BERT
model is improved with reduced input datasets. Moreover, when
the masking rate is increased to 80%, the performance of BERT
decreases, but it is still better than the model trained with a 15%
masking rate. The higher masking rate means that the input
dataset to the model contains fewer data, and the knowledge
learned by the classifier is relatively lower. However, the BERT
can still achieve good results. Even when keeping only 20%
of the input dataset, it still outperforms the 15% masking rate
model. To validate the final data or features used by BERT,

Fig. 11. Performance of BERT. “Orange” represents the performance in
a 15% masking rate strategy. “Gold” represents the performance at 40%
masking rate strategy. “Green” denotes the performance of BERT under 80%
masking rate. “Brown” shows the performance of the SIS-trained BERT.

we extract sufficient input subsets to train the model using the
SIS algorithm. In the case of extremely sparse data, BERT can
perform each task accurately. This fact shows that the BERT
model can learn “knowledge” that humans cannot understand.
Meanwhile, the experimental results show that deep learning is
not affected by this aspect and still learns useful information
to make final judgments at high masking rates. This result
suggests that BERT does not learn real knowledge, but rather
statistical signals for the dataset. Therefore, BERT is suffering
from overinterpretation.

C. XLNet

Unlike BERT, XLNet [20] is essentially the idea of us-
ing an autoregressive language model to encode bi-directional
semantic information simultaneously, which can overcome the

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on October 17,2023 at 01:47:50 UTC from IEEE Xplore.  Restrictions apply. 



4650 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 10, OCTOBER 2023

TABLE VI
XLNET UNDER DIFFERENT MASKING RATES AND SIS. ‘‘MR15’’ REPRESENTS A 15% MASKING

RATE, AND SIMILARLY, ‘‘MR40’’ AND ‘‘MR80’’ REPRESENT A 40% AND 80% MASKING

RATE, RESPECTIVELY

Works Pre-training
Metrics

MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE

XLNet

MR15 0.90 0.92 0.94 0.97 0.69 0.92 0.90 0.85
MR40 0.93 0.93 0.92 0.95 0.73 0.94 0.95 0.89
MR80 0.91 0.92 0.91 0.94 0.70 0.93 0.92 0.87

SIS 0.86 0.88 0.90 0.94 0.66 0.88 0,85 0.81

problems of missing dependencies and inconsistent training/
fine-tuning that exist in BERT. Furthermore, XLNet integrates
ideas from Transformer-XL, the state-of-the-art autoregressive
model, into pre-training.

Table VI shows the metrics of XLNet under different train-
ing strategies, 15% masking rate, 40% masking rate, and 80%
masking rate. XLNet achieves good performance in all eight
downstream tasks. By comparing the 15% masking rate model
with the 40% masking rate model, all downstream tasks im-
prove with increasing masking rate except for QNLI and SST-2.
Among them, MRPC shows the most significant improvement
at 5%, with the other tasks showing improvements between 2%
and 3%. Then, comparing the 80% masking rate with the 40%
masking rate, the performance of XLNet decreases. However,
there are still some improvements in XLNet compared to the
15% masking rate. The results indicate that training XLNet
using the masking rate strategy will further improve the model’s
capability. It means that XLNet can learn the “knowledge” to
support its final decision after losing 80% of the input dataset.
The remaining 20% of the dataset is beyond human comprehen-
sion, let alone using it to make some series of decisions, such
as searching for codes, etc. The performance of XLNet trained
with SIS decreases in all tasks, but it is close to the other mask-
ing rate models, i.e., results stay within 10%. This result proves
that the SIS extracted by the SIS algorithm is valid. Meanwhile,
the SIS contains much less data than the full dataset and lacks
many salient features. The XLNet, however, can make accurate
decisions from these data. XLNet has its own unique way of
learning to understand the dataset, and it is the unknown way
of understanding that leads to the overinterpretation of XLNet.

Finding 2: Overinterpretation is prevalent in PLMs.
PLMs trained in different ways behave similarly, where
the input varies widely, from a few characters to full
queries.

VII. DISCUSSION

RQ 3:

What is the impact of overinterpretation? What are the
challenges in mitigating overinterpretation in general
and how to mitigate overinterpretation?

A. Impact

The above experiments show that overinterpretation appears
not only in SE tasks but also in PLMs. The essence of both

types of experiments is that the input size is reduced and the
final result is consistent with the full input. This fact suggests
that the presence of overinterpretation allows PLMs to im-
prove the efficiency of training by reducing the input. How-
ever, this model, which achieves ultra-high results on a very
small set of data, is wrong [10]. The drawback is that PLMs
learn contents that are incomprehensible from a human per-
spective, or more accurately they learn unique statistical signals
in the dataset. Moreover, if model decisions are made based
on statistical signals alone they can have serious consequences
in terms of misclassification. PLMs make incorrect decisions
when different datasets produce the same statistical signal. For
example, the results of code search do not match and delay
software development; the generated code summaries are in-
accurate and increase the cost of software post-maintenance;
duplicate bug reports are retained or new bug reports are
misclassified as duplicates, resulting in bugs that cannot be
fixed in time. Therefore, we summarize several implications of
overinterpretation.

1. Software design and architecture: Overinterpretation
can lead to misinterpretation of requirements or design
specifications. If developers or architects make unwar-
ranted assumptions or extrapolate beyond what is sup-
ported by the requirements, it can result in a flawed
software design. This can lead to inefficiencies, poor sys-
tem performance, or even critical failures in the software
system.

2. Implementation and coding errors: Overinterpretation
can influence the implementation phase of software de-
velopment. If developers misunderstand the requirements
or overgeneralize the expected behavior, it can result in
coding errors and bugs. Overinterpretation can lead to
incorrect logic, inadequate error handling, or improper
handling of edge cases, all of which can compromise the
quality and reliability of the software.

3. Maintenance and evolution challenges: Overinter-
pretation can make software maintenance and evolution
more challenging. If the original design or implemen-
tation is based on overinterpreted requirements, future
modifications or enhancements may become more com-
plex and error-prone. Over time, these accumulated over-
interpretations can lead to a codebase that is difficult to
understand, modify, or extend, impeding the agility and
maintainability of the software system.

4. Communication and collaboration issues: Overin-
terpretation can lead to miscommunication and mis-
understandings within software development teams. If

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on October 17,2023 at 01:47:50 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: DO PRETRAINED LANGUAGE MODELS INDEED UNDERSTAND SOFTWARE ENGINEERING TASKS? 4651

different team members or stakeholders have conflicting
interpretations of requirements or design decisions, it can
create confusion and delays in the development process.
Effective communication, clarification of expectations,
and documentation of clear specifications are important
in mitigating the risks of overinterpretation in SE tasks.

5. Quality assurance challenges: Overinterpretation can
complicate the testing and quality assurance process. If
testers rely on overinterpreted requirements or assump-
tions, they may overlook critical test cases or scenarios
that are not adequately covered. This can result in in-
complete test coverage, leaving potential defects undis-
covered and increasing the risk of software failures in
production.

6. Project delays and cost overruns: Overinterpretation
can contribute to project delays and cost overruns. If in-
correct assumptions or overinterpretations are discovered
late in the development process, it may require signif-
icant rework, refactoring, or redesign efforts to rectify
the issues. This can lead to project schedule slippage and
increased development costs.

pgtagMeanwhile, to further verify the impact of over-
interpretation, we designed a survey to collect developers’views
on overinterpretation. The survey contains the following ques-
tions: 1) Do you frequently use SE techniques (such as code
search, code summarization, duplicate bug report detection,
etc.) in developing and maintaining software? 2) Have these
techniques ever resulted in errors with serious consequences?
3) Can you understand the real meaning of the query after
masking? 4) Please choose five at random from the 20 exam-
ples. Please read the five masked queries carefully, can you
understand and find the corresponding code snippet?

We invite a total of 20 experienced developers who have
more than five years of software development and maintenance
experience to participate in our survey. Each developer ran-
domly selects five samples to ensure diversity of scenarios and
contexts. For the first question, we collect responses from all
20 developers. 16 out of the 20 developers (80%) report using
code search frequently in their development process.

For the second question, we ask the developers to provide
specific examples of errors that have occurred due to the use
of SE techniques. The developers share their experiences, and
the responses are analyzed to identify the frequency and severity
of errors encountered. 12 out of the 20 developers (60%) report
instances where SE techniques have led to errors with serious
consequences.

For the third question, we present each developer with five
masked queries and ask them to indicate whether they can
understand the real meaning of each query after masking. This
allows us to gauge the level of interpretability of the masked
queries. 17 out of the 20 developers (85%) report that they are
unable to understand the meaning of the masked queries.

For the fourth question, we provide five different examples
of masked queries and ask the developers to identify the correct
code fragment that would be queried based on the masked text.
This helps us assess the effectiveness of code search when
faced with masked queries. Only 4 out of the 20 developers

(20%) correctly identify the intended code fragment in the given
examples.

By including a larger sample size and randomly selecting
examples for each developer, we can obtain a more represen-
tative and diverse set of responses. This approach allows us to
gather a wider range of perspectives and experiences related
to overinterpretation in code search, code summarization, and
duplicate bug report detection.

B. Analysis and Mitigation

Our research aims to discover, explain, and provide initial
mitigations for this problem. Despite these three tasks are
fully difficult to help understand the true root cause of the
over-interpretation of PLM applied in all software engineering
domains. However, we have concluded the reason for over-
interpretation on the basis of the scheme proposed in this article
and the experiments conducted.

To provide substantial evidence for the existence of over-
interpretation, we design two strategies: the masking ratio strat-
egy and the subset importance sampling (SIS) strategy. Results
obtained from different tasks and models, each using different
masking ratios, are presented in Tables II–V in detail. These
findings consistently show that the model’s performance re-
mains relatively consistent and tightly consistent across differ-
ent masking rates, suggesting that it relies on a small set of
features when making judgments.

Furthermore, to further investigate this hypothesis, we em-
ploy the SIS strategy to extract subsets from the data and train
the model for testing. The results depicted in Figs. 5, 7, and
9 show that models trained on these extracted subsets perform
comparable to models trained on the full dataset. These ex-
perimental results show that pre-trained language models often
over-interpret small and insignificant patterns present in the
data. These patterns consist of subsets of characters that serve
as strong evidence for model predictions. Despite the lack of
salient features, these sparse subsets contain statistical signals
that can be effectively generalized from training data to test data.

Meanwhile, it is worth noting that different models achieve
similar results when based on different sufficient subsets of in-
puts. This observation suggests that the behavior of pre-trained
language models is significantly influenced by the characteris-
tics of the training data. Based on our analysis, we can con-
clude that the root cause of overinterpretation lies in the
presence of spurious statistical signals in the training data.

However, we duly acknowledge the inherent limitations of
this study and recognize the need for further research to delve
more deeply into potential factors leading to overinterpretation.
In future work, we are eager to conduct a more comprehensive
and in-depth investigation to gain a deep understanding of over-
interpretation and its implications.

Meanwhile, the following issues affect the mitigation of over-
interpretation. First, overinterpretation is not well understood
and studied at present. It can be easily misunderstood. Second,
overinterpretation is not easily detected. The overinterpretation
may arise from the true statistical signal in the underlying dataset
distribution. Thus, overinterpretation can be harder to diagnose

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on October 17,2023 at 01:47:50 UTC from IEEE Xplore.  Restrictions apply. 



4652 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 10, OCTOBER 2023

TABLE VII
THE PERFORMANCE OF WHOLE WORD MASKING

UNDER QNLI

Whole Word Masking GPT BERT XLNet
15% 0.81 0.87 0.91
40% 0.85 0.92 0.90
80% 0.83 0.89 0.87

as it admits decisions that are made by statistically valid criteria,
and models that use such criteria can excel at benchmarks. Fi-
nally, PLMs are black-box models. Then, we find that the whole
word mask strategy and ensembling can mitigate overinterpre-
tation. Both of them can enrich the input dataset.

Whole Word Masking Strategy: If a subword is masked,
the other parts of the same word are also masked, i.e., the
whole word masking strategy [61]. We describe and summarize
the experimental results in this article. We still use three mask
rates of 15%, 40%, and 80% to train the GPT [19], BERT [9],
and XLNet [20]. Whole word masking strategy can effectively
improve the integrity of the words after masking. Meanwhile,
the readability of the text after masking is increased and the
number of meaningless words decreases (Table VII). Whole
word masking strategy includes the following steps:

1. Data Preprocessing: Prepare your dataset for training by
tokenizing the code snippets, bug reports, or summaries
into individual words or subword units.

2. Masking: Instead of masking individual tokens, apply
whole word masking during the training phase. Replace
entire words with a special “mask” token to encourage
the model to focus on the contextual meaning of complete
words.

3. Model Training: Train your code search, code summa-
rization, or duplicate bug report detection model using the
modified dataset with whole word masking. This trains
the model to consider the context of complete words
rather than relying solely on individual tokens.

4. Evaluation: Evaluate the performance of your trained
model on appropriate evaluation datasets or metrics for
the specific task. Compare the results with models trained
without whole word masking to assess the impact on
overinterpretation and task performance.

Ensembling: It is known to improve classification perfor-
mance [62], [63]. But it can also be used to increase the SIS
size, hence mitigating overinterpretation. We observe that SIS
subsets are generally not transferable from one model to another
i.e., an SIS for one model is rarely an SIS for another. Thus,
different models rely on different independent signals to arrive
at the same prediction. We find that ensembling uniformly in-
creases test accuracy as expected but also increases the SIS size
(Fig. 12). The ensembling strategy includes the following steps:

1. Individual model training: Multiple models are trained
independently using the same architecture for each case.

2. Ensemble classifier construction: From the individu-
ally trained models, we construct ensemble classifiers by
grouping different models together.

3. Emphasizing diversity: To promote diversity within the
ensemble, we incorporate various techniques, such as

Fig. 12. SIS size on MNLI as the number of characters varies. The
horizontal axis represents the number of characters contained in the SIS, and
the vertical axis represents the MNLI.

data augmentation, to introduce variations in the training
process.

4. Hyperparameter optimization: We fine-tune the hy-
perparameters of each model, including learning rates,
regularization methods, and optimization algorithms, to
maximize their individual and collective potential.

5. Subset training data: Each model is trained on a well-
curated subset of the corresponding task’s training data,
ensuring comprehensive coverage of relevant samples.

6. Objective-driven design: Our primary objective is to
develop ensemble classifiers that excel in their respective
tasks, efficiently retrieving code snippets for code search,
generating informative and concise summaries for code
summarization, or accurately detecting duplicate bug
reports.

Finding 3: Overinterpretation makes the model learn
only the statistical signal and ignore the crucial features.
Whole word masking and ensembling are found to mit-
igate overinterpretation.

VIII. THREATS TO VALIDITY

Internal threats to validity. First, the inputs used for each
scenario and model are different, and we have chosen to use the
dataset that they originally used rather than the new uniform
dataset. In the future, we will experiment on several different
datasets. In this way, we will verify that overinterpretation
does not depend on unique datasets. Second, although we have
experimented and validated on pre-trained language models and
SE tasks, there are compatibility challenges when comparing
masked and SIS models with the original models. This is be-
cause the masked/SIS model is trained only on the masked/SIS
data, which is different from the data used to train the original
model. Therefore, the masked/SIS model should also have the
ability to handle raw inputs. A masked model should be able
to predict the full inputs and compare them to their respective
masked versions. In future work, we will focus on refining
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the proposed solution and developing methods to effectively
overcome the compatibility challenge between the masked/SIS
model and the original model. By ensuring that the masked/SIS
model can handle the original input and is consistent with the
original model, we can facilitate more accurate comparisons
and evaluations.

External threats to validity. Our study has a limited scope
and only three types of AI4SE tasks (code search [13], [14],
code summarization [15], [16], and duplicate bug report detec-
tion [17], [18]) and three pre-trained language models (GPT
[19], BERT [9], and XLNet [20]) have been selected. These
tasks are only a part of the SE tasks. There are many different
types of tasks that have not been studied and demonstrated for
overinterpretation. In the future, we will select more various
AI4SE tasks and models to validate our scheme.

IX. RELATED WORK

AI4SE In recent years, many empirical studies have focused
on AI and SE tasks. But these researches are limited to only
one aspect. Wu et al. [64] conduct an empirical comparison
and analysis of four representative deep learning frameworks
with three unique contributions. Christian et al. [65] conduct
an empirical study to investigate the effect of dropout and
batch normalization on training deep learning models. Hu et
al. [66] first conduct a systemically empirical study to reveal
the impact of the retraining process and data distribution on
model enhancement. Abdallah et al. [67] propose an evaluation
of vulnerability detection performance on source code repre-
sentations and evaluates how DL strategies can improve them.
Du et al. [68] present the first comprehensive empirical study on
fault triggering conditions in three widely-used deep learning
frameworks. Pan et al. [69] perform empirical studies using
DL models in cross-version and cross-project software defect
prediction to investigate if using a neural language model could
improve prediction performance. However, all these studies
failed to examine the flaws of deep learning models themselves.

Meanwhile, many researchers have started to focus on ex-
plainable AI for SE tasks. Rabin et al. [70] propose a model-
agnostic approach to identify critical input features for models
in code intelligence tools, by drawing on software debugging
research, and then exploring and analyzing the models. Cito
et al. [71] explore counterfactual explanations for models of
source code to help developers understand and use the model.
Li et al. [72] propose IVDetect, an interpretable vulnerability
detector that uses AI to detect vulnerabilities while providing
an interpretation of the vulnerability detector. These works are
concerned with how to interpret the decisions made by the
model. However, we explore a potential flaw of the model, i.e.
overinterpretation.

PLMs Previous studies study cross-modal pre-trained lan-
guage models [73] and the robustness of pre-trained language
models to spurious correlations [74]. Moreover, many studies
focus on the design of pre-trained models and the enhancement
of models [75]. The first generation pretrained models aim to
learn good word embeddings, they are usually very shallow
for computational efficiencies, such as Skip-Gram [76] and

GloVe [77]. The second generation pre-trained models focus
on learning contextual word embeddings, such as CoVe [78],
ELMo [79]. All the above works do not focus on some defects
hidden by the models, such as overinterpretation. This study ex-
plains overinterpretation by investigating different pre-trained
language models.

X. CONCLUSION

Deep learning-based natural language processing techniques
are becoming increasingly popular for researchers to solve var-
ious tasks in SE. This article constructs the first comprehensive
study to reveal the overinterpretation in PLMs of AI4SE tasks.
By investigating the most representative AI4SE tasks as well
as PLMs, we identify the existence of overinterpretation in
these models. The wide presence of these problems motivates
future research to further tackle the overinterpretation of deep
learning.

In the future, we will design a new evaluation scheme to
identify overinterpretation and thus help researchers refine their
models.
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