
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 8, AUGUST 2023 4135

STRE: An Automated Approach to Suggesting App
Developers When to Stop Reading Reviews

Youshuai Tan , Jinfu Chen , Weiyi Shang , Tao Zhang , Senior Member, IEEE, Sen Fang , Xiapu Luo ,
Zijie Chen , and Shuhao Qi

Abstract—It is well known that user feedback (i.e., reviews) plays
an essential role in mobile app maintenance. Users upload their
troubles, app issues, or praises, to help developers refine their apps.
However, reading tremendous amounts of reviews to retrieve useful
information is a challenging job. According to our manual studies,
reviews are full of repetitive opinions, thus developers could stop
reading reviews when no more new helpful information appears.
Developers can extract useful information from partial reviews to
ameliorate their app and then develop a new version. However, it
is tough to have a good trade-off between getting enough useful
feedback and saving more time. In this paper, we propose a novel
approach, named STRE, which utilizes historical reviews to suggest
the time when most of the useful information appears in reviews of
a certain version. We evaluate STRE on 62 recent versions of five
apps from Apple’s App Store. Study results demonstrate that our
approach can help developers save their time by up to 98.33% and
reserve enough useful reviews before stopping to read reviews such
that developers do not spend additional time in reading redundant
reviews over the suggested stopping time. At the same time, STRE
can complement existing review categorization approaches that
categorize reviews to further assist developers. In addition, we
find that the missed top-word-related reviews appearing after the
suggested stopping time contain limited useful information for de-
velopers. Finally, we find that 12 out of 13 of the emerging bugs from
the studied versions appear before the suggested stopping time.
Our approach demonstrates the value of automatically refining
information from reviews.

Index Terms—App reviews, maintenance, mobile applications.

Manuscript received 6 July 2022; revised 6 June 2023; accepted 9 June 2023.
Date of publication 13 June 2023; date of current version 15 August 2023. This
work was supported in part by Macao Science and Technology Development
Fund, Macau SAR under Grants 0047/2020/A1 and 0014/2022/A, in part by
Hong Kong RGC Projects under Grants PolyU15223918 and PolyU15224121,
in part by HKPolyU under Grant ZVG0, and in part by China Postdoctoral
Science Foundation under Grant 2017M621247. Recommended for acceptance
by N. Nagappan. (Corresponding author: Tao Zhang.)

Youshuai Tan, Tao Zhang, Sen Fang, and Zijie Chen are with the School of
Computer Science and Engineering, Macau University of Science and Technol-
ogy, Macau 999078, China (e-mail: 2109853jim20001@student.must.edu.mo;
tazhang@must.edu.mo; fangsen1996@gmail.com; chenzjfc@gmail.com).

Jinfu Chen is with the School of Computer Science, Wuhan University,
Wuhan, Hubei 430072, China (e-mail: jinfuchen@whu.edu.cn).

Weiyi Shang is with the Department of Computer Science and Software En-
gineering, Concordia University, Montreal, Quebec H3G 1M8, Canada (e-mail:
shang@encs.concordia.ca).

Xiapu Luo is with the Department of Computing, The Hong Kong Polytechnic
University, Hong Kong, SAR China (e-mail: csxluo@comp.polyu.edu.hk).

Shuhao Qi is with the Department of Computer Science, The University of
Manchester, M13 9PL Manchester, U.K. (e-mail: qiletian6666@gmail.com).

Digital Object Identifier 10.1109/TSE.2023.3285743

I. INTRODUCTION

MOBILE devices have become increasingly popular in
recent years. People use Mobile Applications (i.e., apps)

to chat, shop, and kill time online, especially during the very
challenging pandemic period. In 2020, people have downloaded
apps about 218 billion times around the whole world1.

App markets, e.g., Apple’s App Store, allow users to rate apps
and submit reviews to express their opinions such as complaints
and suggestions for new features, which is very useful for devel-
opers to improve the quality of their apps. Noted that massive
users may encounter bugs which are hardly found by developers
during app development [1]. Failures in such apps can hurt the
user experience and cause financial loss. Fortunately, developers
could find these bugs from reviews. Many prior studies [2],
[3], [4], [5], [6], [7], [8], [9] have proposed to use reviews to
maintain apps. By using the questionnaire method, AlSubaihin
et al. [10] found 51% of developers frequently/very frequently
utilize reviews to fix bugs and find new features.

However, it is infeasible to examine and analyze a plethora
of reviews manually in practice. Pagano and Maalej [5] found
that an app receives up to 22 reviews every day on average.
Especially, several popular apps contain tremendous reviews,
e.g., WeChat gets about 60,000 reviews per day [11]. Actually,
developers face the dilemma between ample information from
reviews and their costs. On one hand, the more reviews are, the
more valuable feedback returns. On the other hand, reading too
many reviews may delay the release schedule of the software
system, especially in a fast-paced release cycle. Maintenance
is the final phase of app development lifecycle, which is a
continuous process [3]. Developers combine reviews and their
own findings to develop a new version and repeat this process.
Intuitively, repeated information is contained in reviews over
a long period of time [12], which is confirmed in our manual
studies. Therefore, to improve developing efficiency, developers
could stop reading reviews to develop a better version when most
useful information has been submitted for the current version.
However, it is impossible to guess this special time.

To bridge this gap, we design an algorithm named STRE, i.e.,
deciding when to STop reading user REviews. In particular, we
use a topic modeling technique, i.e., Latent Dirichlet Allocation
(LDA) [13] to extract the topics appearing in the historical
reviews of the app. We leverage the topics as a vehicle to measure
the information that is conveyed in the reviews. If developers do

1https://www.statista.com/

0098-5589 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on August 29,2023 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3390-4079
https://orcid.org/0000-0001-7410-9146
https://orcid.org/0000-0001-6222-7444
https://orcid.org/0000-0002-6272-4069
https://orcid.org/0000-0002-9918-7180
https://orcid.org/0000-0002-9082-3208
https://orcid.org/0000-0001-6603-050X
https://orcid.org/0009-0002-4007-9924
mailto:2109853jim20001@student.must.edu.mo
mailto:tazhang@must.edu.mo
mailto:fangsen1996@gmail.com
mailto:chenzjfc@gmail.com
mailto:jinfuchen@whu.edu.cn
mailto:shang@encs.concordia.ca
mailto:csxluo@comp.polyu.edu.hk
mailto:qiletian6666@gmail.com
https://www.statista.com/

4136 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 8, AUGUST 2023

not see new words in each topic from the reviews in a new
version for a long period of time, we consider that developers
may be unlikely to observe new information by reading more
reviews anymore. The length of the waiting time period for
new information appearing in each topic is empirically learned
from historical reviews in a conservative manner (see details in
Section III-C2), in order to avoid missing important reviews.

We evaluate the effectiveness and efficiency of STRE by
suggesting the time to stop reading reviews for versions in five
popular apps from iOS. Our results show that our approach can
reduce the time needed to read reviews by a large amount.
In particular, with covering most of the information (to see
details, refer to RQ1 and RQ2 in Section V) our approach can
effectively suggest stopping time that reduces the total time
for reading reviews by up to 98.33%. What’s more, as STRE
could complement existing review categorization approaches,
our approach can save effort of 83.58% and 84.64% on average
for a classification-based approach [14] and a cluster-based
approach [15], respectively. In addition, by manually examining
the missed topic-related reviews that appear after the suggested
stopping time, we find seven categories of information, where
89% of the reviews are not useful for developers. Finally, we find
that the early stopping time does not prevent the developer from
identifying emerging bugs from the reviews. To help researchers
reproduce our work, we make the dataset, code, and study results
available in our replication package.2 The contributions of our
paper are summarized as below:
� To the best of our knowledge, our approach is the first to

design a tool which could help developers decide when to
stop reading reviews. STRE could improve the efficiency
of app maintenance.

� We show the effectiveness of STRE via presenting our
encouraging results on five popular apps with more than
60 different versions.

The rest of this paper is organized as follows. In Section II,
we describe the background and motivation of our work. The
detailed methodology of STRE is described in Section III. Sec-
tion IV introduces the study setup. Study results are presented
in Section V. Section VI explains our interviews with five
developers. We discuss limitations and present related work in
Section VII and Section VIII, respectively. Finally, Section IX
concludes this article.

II. BACKGROUND AND MOTIVATION

A. Reviews

Apps provide a channel for users to express their comments
concerning bugs, new features, praise for apps, etc. Fig. 1 shows
the interface that users rate and comment on for Zoom. In this
case, the user complains a bug that she cannot hear the voice in
Zoom meeting.

Reviews from different apps have diverse characteristics.
Due to apps’ own functions, users may comment more about

2https://drive.google.com/drive/folders/1K692DYpeNWBuhuG7g6iG-r6iM
pT4edFW

Fig. 1. An example of review window in Zoom.

several parts of one app. For example, Zoom users usually have
some troubles with the microphone and network connection.
Moreover, several apps’ users may tend to give their feedback
quickly after a new version for their beloved apps while some
do not. For instance, many people can watch YouTube videos at
any time, therefore, they always write the reviews quickly once
the version is updated even at midnight.

Reviews all too often are used to improve mobile apps. About
51% of developers frequently/very frequently use reviews to
enhance and maintain apps [10]. To listen to their users, some
developers try to read all reviews.3

B. App Lifecycle

The maintenance phase is a continuous process of app de-
velopment [3]. Developers read reviews to fix bugs or perform
improvements at regular intervals in the form of updates to the
app [3]. Meanwhile, users post their reviews after the release of
a new version.

Since app stores have review procedures to raise the qual-
ities of apps, developers have to delay the release of a new
version [10]. For example, a developer who participates in

3https://www.quora.com/Do-app-developers-actually-read-the-reviews-
people-give-them

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on August 29,2023 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

https://drive.google.com/drive/folders/1K692DYpeNWBuhuG7g6iG-r6iMpT4edFW
https://drive.google.com/drive/folders/1K692DYpeNWBuhuG7g6iG-r6iMpT4edFW
https://www.quora.com/Do-app-developers-actually-read-the-reviews-people-give-them
https://www.quora.com/Do-app-developers-actually-read-the-reviews-people-give-them

TAN et al.: STRE: AN AUTOMATED APPROACH TO SUGGESTING APP DEVELOPERS WHEN TO STOP READING REVIEWS 4137

Fig. 2. An overview of our approach STRE.

AlSubaihin et al.’s [10] research complains that: “So you try to
avoid this horrible situation, which we’ve been in a few times,
where you release something and then it breaks and then you
have 11 days of letting your users down and getting negative
reviews. You can’t do anything about it because Apple takes a
long time.”

C. Motivation

Let us consider a hypothetical scenario. As an app developer,
James attaches importance to reviews. Since one version of
James’s app was released yesterday, thus he analyzes the new
reviews tonight. After reading existing reviews, he extracts two
bugs and one feature request. Because one of the bugs is very
serious and the app store’s review mechanism will cost much
time, he has to fix bugs and add this feature immediately. Hence,
he faces an awkward dilemma. On one hand, he does not want
to read the following reviews to save time. On the other hand,
he can not ensure that no more useful information will appear
in reviews. Therefore, James needs a tool to suggest him when
to stop reading reviews.

Due to the above-mentioned motivation, we design a novel
approach named STRE. Since reviews from a certain app have
their own characteristics, STRE utilizes historical reviews from
this app to suggest when to stop reading reviews.

III. METHODOLOGY

In this section, we present our approach, i.e., STRE, which
automatically suggests when to stop reading reviews on a new
version of an app based on the historical app reviews. In general,
our approach would suggest the stopping time if no new infor-
mation appears in the app reviews for a certain period of time.
An overview of our approach is shown in Fig. 2. To sum up, our
approach STRE consists of four steps: (1) preprocessing app
reviews; (2) identifying review topics (i.e., extracting old infor-
mation); (3) learning when to stop (i.e., studying the distribution
of old information); and (4) suggesting when to stop.

A. Preprocessing App Reviews

In the first phase, we preprocess app reviews. The real-world
reviews are highly susceptible to noisy, misspelled, and inconsis-
tent contents due to their huge size and being written by the app
users who have different background [16]. Low-quality reviews

would lead to low-quality experimental results. In particular,
similar to the prior study [17], we adopt the rule-based approach
to preprocess our data by the following several steps.

1) App Reviews Cleaning: As reviews may contain noisy and
inconsistent contents, in this step, we wish to clean noise data and
make reviews consistent. In particular, we first convert capital
letters in reviews into lowercase letters. Second, we remove the
non-English words and punctuations. Generally, the number of
consecutive repeated letters is less than three [17]. Therefore,
next, for each word in a sentence, we remove the redundant
consecutive repeated letters if the number of a consecutive
repeated letter is more than two by using regular expression.
For example, the word “niceeee” is converted into “nice”. In
addition to repeated letters, there exist consecutive duplicated
words. Therefore, we also remove consecutive duplicate words
in a sentence of each review with regular expression, e.g., “very
very very good” is changed to “very good”. Finally, we remove
the stop words that are common words (e.g., “the”, “a”, “in”)
which present meaningless information.

2) Reviews Tokenization: In the second step, we transform
reviews into tokens. In particular, each sentence of the review is
divided into tokens. Tokens of all sentences are used to form to-
ken sequence(s). In this work, we use the popular library Natural
Language Toolkit (NLTK)4 [18] to perform tokenization.

3) Reviews Transformation: To make our analysis more un-
derstandable and efficient, in the last step, we transform reviews
into consolidated forms which are appropriate for analysis. First,
we extract the numbers from each review. In particular, we
replace all numbers with a unified word, i.e., “〈digit〉”. End
users might type a review that has spelling errors. Therefore,
second, we correct the misspelled words in each review. In our
approach, we use a generic spell checking library Enchant5 to
correct reviews that have spelling mistakes. Reviews often use
different forms of a word, such as love, loves, and loved. To
make reviews consolidated, we lemmatize words of each review
to reduce inflectional forms of a word to a common base form.
The lemmatization phrase can be divided into two steps. First,
we lemmatize all verbs. Then we conduct the lemmatization for
nouns without “ss” ends, since it is not suitable for words ending
with ‘ss’ (e.g., “pass” to “pas”). In our approach, we use library
NLTK to lemmatize the reviews.

4https://www.nltk.org
5http://www.abisource.com/projects/enchant/

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on August 29,2023 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

https://www.nltk.org
http://www.abisource.com/projects/enchant/

4138 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 8, AUGUST 2023

B. Identifying Review Topics

In the second phase, we extract old information from historical
reviews. Reviews from different versions often shared similar
topics. For Amazon Shopping, users tend to comment on the
conditions of this app. For example, a user of Amazon Shopping
added a review “The Amazon app no longer works on my iPad”.
Thus we could take the word app as a representative word of old
information.

Inspired by prior study [19], [20], [21], [22], [23], [24], [25],
[26], [27], [28], [29], [30], we use statistical topic model to
identify review topics. Designed from the domain of NLP and
information retrieval, topic modeling could help us organize and
summarize documents at a scale that would be impossible by
human annotation [31]. They are statistical methods that could
conduct the unsupervised analysis for the words of the original
texts to discover the themes that run through them. Thus, in our
work, we use a topic model to identify topics of reviews due
to the following reasons: (1) topic model requires no training
data [19]; (2) topic model performs well in unstructured data
such as app reviews [32]; (3) topic model is scalable to large-
scale documents in practice [19]. To make our description more
specific, we present an illustrative example, whose historical
data are reviews of eight versions from an app named Amazon
Shopping.

1) Choosing a Topic Model: We apply Latent Dirichlet Al-
location (LDA) to identify statistical topics of reviews. LDA
is a soft clustering algorithm which is ideal for text [13]. In
LDA, a topic can be represented by a collection of words
that co-occurred frequently in the reviews. For example, the
word app affiliates to a topic of Amazon Shopping. Many prior
studies [12], [33], [34] used LDA-based algorithms to capture
the topics of reviews.

In the application of LDA for given N reviews R1, R2,
. . . , RN , LDA aims to automatically discover a list of
(M,M <= N) topics, i.e., T = {T1, T1, . . ., TM}. Each topic
Ti is defined by its top words, i.e., top K words. In other words,
each topic refers to a probability distribution over the top K
words in the reviews.

2) Identifying Reviews Topics: To extract old information
from historical reviews, we first set the number of topics. The
number of topics, i.e.,M , is an input to control the granularity of
the topics. Prior study [12] defines the number of topics ranging
from six to 12. Their results show that M ranging from six
to 12 achieves a good trade-off between precision and recall
performance metrics adopted by their approach. Similar to the
prior study, we set the number of topics M from five to 20 in
a conservative strategy according to the coherence [35] metric.
Coherence measures the relative distance between words within
a topic. The value of coherence ranges from 0 to 1, and a larger
value for coherence indicates a higher quality of the topic model.
Thus we choose to use the number of topics with the largest
coherence score as the number of topics.

For the threshold of top K words in each topic, prior stud-
ies [36], [37] found that top ten words can capture most of the
semantics and be used to represent the topic itself. Therefore,
we take the top ten words in each review topic to stand for the

TABLE I
OUR ILLUSTRATIVE RUNNING EXAMPLE OF IDENTIFYING REVIEW TOPICS

topic. The output of the LDA model is M topics and top ten
semantically related words for each topic. Each top word has a
contribution score for its corresponding topic. After this step,
we identify three topics with the corresponding top ten words
in each topic in our illustrative running example (cf., Table I).
The value below each top word is its contribution score. For
example, the word “delivery” contributes a 0.014 score in the
second topic.

C. Learning When to Stop

In the third phase, we aim to use the identified topics from
subsection III-B to study the distribution of old information.
Since we take topics of historical reviews as old information, we
could suggest stopping reading reviews when all topics appear
in reviews of new app version. Note from last subsection III-B, a
topic consists of top words. Therefore, we speculate that a topic
appears in reviews of the new app version if most of its top words
have appeared.

For the above-mentioned purpose, we first define a metric,
i.e., Topic Stability Time (TST), to measure the review topic
stability. Then we utilize historical reviews to learn the longest
TST s, which helps us determine the stop point.

1) TST Definition: Since each topic appears in the form of
top words in each version, we consider a topic in a stable state if
no top word appears at that point. Therefore, we define TST as
the time interval between the appearance of two top words from
the same topic. In our approach, each topic consists of ten top
words. Therefore, there are a total of nine instances of TST for
each topic.

2) Longest TST s Extraction: As STRE is a conservative
approach, we extract the Longest TST s of all topics from
historical reviews to set the stopping metric in reviews of a
new app version. Gao et al. [12] proposed an approach, named
IDEA, which considers that the topics of reviews from the same
app is stable across different releases. Based on this intuition,
the distributions of information in different versions from the
same app are similar. Thus we consider that the characteristics
of TST in a new version would be similar to the trend of TST in
historical versions. We split the historical reviews by version and
extract the longest TST s for all topics. Some app versions may
have a very long TST . To filter out these outliers, we remove
the TST s that are at least one standard deviation away from
mean TST s of the topic. For example, for one study of Amazon
Shopping, we extract ten top words of topic 3. The top word easy
of topic 3 appears after 0.78 d, which is the maximum interval

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on August 29,2023 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

TAN et al.: STRE: AN AUTOMATED APPROACH TO SUGGESTING APP DEVELOPERS WHEN TO STOP READING REVIEWS 4139

Fig. 3. An illustrative example of suggesting when to stop by using the longest TST s. Each sub-figure represents a certain topic of historical reviews. The red
solid line is the stop metric (i.e., the longest TST). The blue solid line is the TST . The blue dotted line is the number of top words that have appeared. The dark
spot is the time that this topic becomes stable.

time between two top words. According to our method, we take
0.78 as the longest TST s for topic 3.

To be more clear, the red solid lines in Fig. 3 show the
examples of the extracted longest TST s. Since the distribution
of topics are different, the longest TST s vary greatly. Several
topics could be in a stable state for nearly one day, while some
ones become unstable quickly (i.e., a top word appears). In Fig. 3,
the top and bottom topics have a relatively higher longest TST ;
while the middle topic has a much lower longest TST .

D. Suggesting When to Stop

In the final phase, we utilize the extracted longest TST s from
historical reviews to suggest the stop reading time in reviews
of a new app version. Given the reviews of a new version, we
consider that a topic is stable if the reviews at a time point satisfy
the following condition: the stable time of such a topic is longer
than the longest historical TST of the same topic. When all of
the historical topics are stable in the new version, we suggest to
stop reading reviews.

To explain the process of suggesting when to stop more
clearly, we present a hypothetical example in Fig. 3. In the
first topic (i.e., the first sub-figure), the longest TST is 0.54
days. When stable time of the seventh top word nearly reached
0.54, the eighth top word appeared. Thus topic 1 becomes stable
during the eighth top word at last. In the second topic, its longest
historical TST is relatively short. It becomes stable just before
the tenth top word appears. In the third topic, all ten top words
appear quickly, thus it becomes stable quickly. Overall, we could
only stop reading reviews if all the topics exist in their stable
state, which happens at the black dot in the first sub-figure.

IV. STUDY SETUP

In this section, we present the setup of our study which
evaluates the performance of our approach.

TABLE II
OVERVIEW OF OUR SUBJECT APPS

A. Subject Apps

We choose five popular open-source apps including Zoom,
YouTube, Amazon Shopping, Twitter, and Starbucks as our
subject systems. We choose these five apps due to the following
reasons: 1) these apps contain many reviews across different
versions (e.g., YouTube contains an average of 1,427 reviews
per version); 2) version update cycles of these apps are different.
The overview of the five subject systems is shown in Table II.

B. Data Collection

In this subsection, we describe the details of our data col-
lection. We collect reviews from the App Store platform. In
particular, we download reviews from Qimai Data.6 Since we
need a reasonable amount of reviews to perform our analysis,
we utilize reviews that are posted from June 1st, 2020 to March
1st, 2021. In total, we collected 111,869 reviews for the five apps.
Each review contains a review title, a review text, and a review
rating score. Second, we extract each review’s contents, title,
post timestamp, and the rating score. Finally, we assign each
review into the version that the review belongs to. In particular,
we first extract all versions and their release timestamps. We then
split the reviews into a corresponding release by comparing their

6https://www.qimai.cn/

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on August 29,2023 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

https://www.qimai.cn/

4140 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 8, AUGUST 2023

timestamps. The data scale of collected reviews and versions is
shown in Table II.

V. STUDY RESULTS

In this section, we present the evaluation results to verify the
effectiveness of our approach.

We first build our data set. Specifically, we split all the reviews
into two sets as their versions with the chronological order. The
first set contains historical versions of the given reviews (training
set) and the second set includes their new versions (testing
set). Apps may not have readily available historical versions of
reviews to learn their topics. Therefore, we adopt an incremental
validation method [38] to learn the information from reviews in
the historical versions. For an app with a total of n versions, we
start our study with the (n/2+1)th version and use its prior n/2
versions to learn historical information. For example, Amazon
Shopping has a total of 16 versions in our study. Therefore,
we use the first eight versions to learn historical information in
order to suggest stopping time for the 9th version. Afterward, we
would use the information from the previous nine versions, to
suggest the stopping time for the 10th version. The rest versions
can be done in the same manner until the stopping reading time
of the 15th version is suggested. Note that the last version is
discarded because the last version is not a full version so that it
is difficult to analyze the last version for all apps. Then we apply
STRE to the data set.

As our tool misses some top words after the stopping reading
time, to evaluate whether the related reviews are significant,
we propose the research question RQ1: Do reviews that appear
after the suggested stopping time provide useful information?
We manually analyze these missed reviews. To gauge whether
STRE would not cover several emerging bugs, we bring up RQ2:
Do emerging bugs appear after the suggested stopping time
of reading reviews? We utilize an external tool to conduct the
studies in RQ2. RQ1 and RQ2 could confirm that STRE would
not miss important information. To gauge whether STRE could
help developers save much time and improve the developing
efficiency, we formulate RQ3: How much time could developers
save by using our algorithm? We empirically show that devel-
opers could save much effort when using other existing review
categorization tools [14], [15] together with the help of STRE.
We use an internal metric to evaluate whether the cut reviews
contain enough information in RQ3. In RQ3, we also try another
way of applying STRE, which first classifies reviews into several
categories [15], [39] then applies STRE to reviews of the same
category afterwards. We discuss the corresponding results in
RQ3.

To further evaluate STRE, we propose a simple baseline
approach that is based on similarity score. We elaborate the
baseline approach in RQ2. Since RQ1 assesses STRE from the
perspective of its construction (i.e., top words), we just compare
the baseline approach with STRE in RQ2 and RQ3.

RQ1: Do reviews that appear after the suggested stopping
time provide useful information?

Motivation: Reviews appeared before the suggested stopping
time may not cover all the information. We call a review that

appears after the suggested stopping time and covers the top
words in the review topics as a missed review. Such missed
reviews might play an important role for developers. Therefore,
in this research question, we would like to know whether the
missed reviews in each topic are significant for developers.

Approach: To identify the usefulness and informativeness of
reviews, the prior study [14] classifies app reviews into different
categories, e.g., bug and feature request. Such categories are
helpful for developers to develop and maintain apps. Similar to
the prior study, we classify the missed reviews into different
categories and discuss the usefulness for developers of each
category. To achieve the above-mentioned goal, we follow a
systematic process to classify missed reviews. The process is
described as follows:

Step 1. Extracting reviews: In this step, we extract the missed
reviews based on the missed top words. For each new version in
each studied app, we extract the missed top words, i.e., the top
word appearing after the suggested stop reading time. Then we
extract the reviews that contain the missed top words after the
suggested stop reading time.

Step 2. Generating initial categories: The manual examina-
tion of the categories of reviews may be subjective. To mitigate
subjectivity, two authors of this paper first read all the missed
reviews, then put reviews into several categories individually.
They are majoring in computer science and have at least five
years experience of software development.

Step 3. Generating final categories: With the initial categories
generated in the last step, the two authors discuss their categories
to reach a consensus on a final category, which is used in the next
step to classify missed reviews.

Step 4. Classifying missed reviews: Two authors classify each
missed review into a specific category that is generated from
the last step, independently. An agreement ratio is calculated
based on the independent classification. If there exists any
disagreement, a discussion is held with another author in order
to come to a consensus.

Step 5. Discussing the value of the missed reviews: To un-
derstand whether these missed reviews contain much useful
information, the two authors discuss each review one by one. The
discussion by the two authors considers both the information in
the missed review themselves and the information that is already
provided in the reviews before the suggested stopping time.
Reviews containing pure noise may not be very useful to the
developers, while reviews about reporting an unseen bug can be
critical for developers [14].

Result. Missed reviews are classified into seven categories:
Table III shows the results of the collected missed reviews
and their corresponding categories. We find only 170 missed
reviews based on the missed top words, while the number of
reviews appearing before the suggested stopping time is 1,480.
The ratio between relevant reviews before and after the stopping
reading time is 8.71. Such a result also reflects that our approach
achieves a high information coverage rate. In addition, such
a small scale number makes our manual study on classifying
missed reviews feasible. The missed reviews are classified into
seven categories: bug, special feature request, general feature
request, praise, dispraise, pure noise, and information sharing

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on August 29,2023 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

TAN et al.: STRE: AN AUTOMATED APPROACH TO SUGGESTING APP DEVELOPERS WHEN TO STOP READING REVIEWS 4141

TABLE III
SUMMARY OF THE REVIEW CATEGORIES

(cf., Table III). The Cohen’s and Fleiss’ kappa agreements of
the two authors’ results are 0.8745 and 0.874 (almost perfect
agreements [40], [41]), respectively.

The missed reviews provide very limited help for developers:
Table III shows the number of missed reviews in each category,
where we assume that only bug and general feature request
are vital categories for developers [10]. The total number of
them is 45 (4+15+26). Also, two authors manually find the
identical/ similar one of a missed review, which appears before
our suggested stopping time. To mitigate the subjective bias,
We only consider multiple reviews being about the same bug/
general feature request if both authors agree. These missed
reviews are useless for developers, as they are reviews about
the same bug or feature request appeared before the suggested
stopping time. The result shows that 27 of 45 reviews (i.e., vital
reviews) are belong to these reviews, and the ratio is 0.6. Such
a result implies that only 18 reviews may contain important
information for developers. The rate between these 18 reviews
and all 170 comments is 0.11. We discuss the usefulness of each
category of reviews in detail below.

Bugs: Reporting bugs is one of the major reasons of reviewing
an app [42]. Missing reading a review that reports a critical bug
may be detrimental for an app. We find a total of 19 missed
reviews that are related to bugs. These bugs can be divided into
update-related and update-unrelated. Out of the 19 reviews, we
find that eight of the associated bugs are already reported by
other users before our suggested stopping time. For example, one
of the missed reviews in app Starbucks mentioned that “Upon
using the app, it crashes multiple times.”; while a similar bug
was reported five days ago with different wording, mentioning
“mobile ordering is broken. Customer support just says try
reinstalling the app.”.

However, the similar reviews may contain supplementary
information for bug reproduction, which is the first step to fix

bugs from reviews [43]. Therefore, to gauge whether we would
omit valuable information for bug reproduction, we analyze
the eight bugs whose reviews appear both before and after the
stopping time suggested by STRE. Li et al. [43] found that the
descriptions of actions before bugs, device, Android OS, and
OS version are significant for crash reproductions according to
their manual analysis. We would like to see if the review for each
bug after the suggested stopping time would provide additional
aforementioned information to reproduce the bug. However, we
find that none of the reviews provide any additional information.
Overall, we find that we could leave out the eight missed reviews
that appeared after the stopping time for bug reproduction, since
they do not contain any supplementary information.

For the rest 11 missed reviews that are related to bugs, we find
that most of them are related to very specialized issues, such as
incorrect UI operations or network signal issues. For example,
a Starbucks user commented that he could not find the nearest
location due to a bad internet connection. Although still with
value to read, we consider that these reviews can be treated as
low-priority issues for developers when the amount of reviews
are huge.

Special Feature Request: Users may request special features
that may not be useful for all the apps’ user base. For example,
a user hopes that Starbucks could add an option to pick roast
for the misto. Most people may not upload this request. Thus
special feature requests may contain a little useful information
for developers.

General Feature Request: Developers rely on general feature
requests to figure out high-priority ones that should be imple-
mented in the next versions [44]. Thus high-priority general
feature requests are vital for developers. Out of the 26 reviews,
we find 19 of the general feature requests are commented on
by other users before our suggested stopping time. For example,
one of the missed general feature request in Starbucks mentioned

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on August 29,2023 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

4142 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 8, AUGUST 2023

that “I love Starbucks and their app. Only thing I wish you could
do is customize more.”; while a similar request was reported
three days ago, mentioning “I love this app except I don’t have
all the choices.”. For the rest seven missed reviews that are
related to general feature requests, we find that most of them
are not high-priority requests, such as personal preferences. For
example, a YouTube user found that this app did not allow
keyboard shortcuts to control video playback in a new version.
The user of the app wants this feature back. Thus we assume that
these reviews contain low-priority information for programmers.

Praise: Although it is important for developers to know that
their users like the apps, reviews with praises may contain a
little useful information for app development. For example, a
user commented “Thank goodness for Zooming. i have knitted
many wonderful hours with first class teachers.” on Zoom.

Dispraise: Most of the dispraising reviews are not useful to
developers, since such reviews typically do not contain useful
guidance on how to improve the apps. For example, a user
commented, “So why does a trillionaire have such an annoying
app.” on Amazon Shopping.

Pure Noise: The reviews only containing pure noise could be
removed indisputably. For example, a user commented “Sub-
scribe to dreammmmmmmm poggggg.” on YouTube.

Information Sharing: Some of the reviews want to provide
information to the developers and could be useful for the de-
velopers to read. However, such information often contains
personalized unpleasant experiences, which are difficult for
developers to have actionable guidance. For example, a Twitter
user commented that “Logged in earlier to check things out now
later on I try logging in again this afternoon; it says I exceed
the number of attempts.”.

Our manual study shows that 89% of the reviews that ap-
pear after the suggested stopping time do not contain useful
information for developers.

RQ2: Do emerging bugs appear after the suggested stopping
time of reading reviews?

Motivation: STRE just retains a few reviews after the sug-
gested stopping reading time, the missed reviews may report
serious bugs, e.g., emerging bugs [12]. An emerging bug is
defined as a bug that if the bug rarely appears in a previous time
period but is mentioned by a significant proportion of reviews
in a more recent time period [12]. Emerging bugs are vital
information for developers. Therefore, in this research question,
we would like to answer whether emerging bugs appear after
the suggested stopping time by our approach. In addition, the
emerging bugs may only cover a few bug instances. In order to
increase the scale of our study, we aim to study more bugs in the
reviews of our subject apps.

Approach. Emerging Bugs: To answer RQ2, we first collect
emerging bugs for our studied apps. To collect emerging bugs
of apps, we apply IDEA [12] on the raw reviews of each app.
IDEA is a tool that can automatically detect emerging bugs
across different versions of apps. IDEA takes the raw reviews as
input data, and outputs the specific sentences that may contain

emerging bugs. In particular, we reused the implementation of
IDEA from Gao et al. [12] and ran IDEA on our collected reviews
to collect emerging bugs.

IDEA may report false positive emerging bugs. Therefore,
in the second step, we manually examine the emerging bugs
outputted from IDEA. To rigorously identify the specific sen-
tences that are related to the emerging bug, two authors of
this paper who have at least five years experience of software
development extract emerging bugs from sentences outputted
from IDEA independently. Each author removes sentences that
are unclear or unrelated to bugs. If there exists any disagreement,
a discussion would take place with another author in order to
come to a consensus.

Furthermore, we evaluate whether reviews appeared before
our suggested stopping time could cover all the emerging bugs.
If the sentences (outputs of IDEA) about an emerging bug appear
before our suggested stopping time, we think reviews appeared
before our suggested stopping time could cover this emerging
bug. If we find other sentences (not outputs of IDEA) related to
an emerging bug appear before our suggested stopping time, we
consider reviews that appeared before our suggested stopping
time could cover this emerging bug.

The baseline approach iterates over all reviews of a certain
version. When processing a new review, the baseline approach
calculates the similarity scores between it and all saved re-
views. If all similarity scores are less than a threshold, the
review will be saved. Otherwise, the baseline approach removes
the review. Note that the first review should be saved. Af-
ter the iteration, the submitted time of the last saved reviews
is the stopping time of the baseline approach. One other possible
way is the cluster-based algorithm. However, since the inputs
of clustering algorithms are all reviews of a certain version, it
becomes impractical to obtain all reviews when beginning work
on a new version. Achananuparp et al. [45] defined the scoring
threshold for similar pairs as 0.5 to evaluate 14 existing text
similarity measures. Drawing inspiration from them, we also
set the threshold as 0.5 and utilize word2vec [46] to represent
reviews.

Bug-Related Reviews: As it is challenging to manually iden-
tify all the reviews into bugs or not bugs, we first use labelled
data [15] to find all bug-related reviews by using SVM [39]. Sec-
ond, as some bug-related reviews refer to the same bug, we clas-
sify the bug-related reviews into clusters with K-means [47]. To
get more satisfactory clustering results, we obtain embeddings of
reviews with SimCSE [48], which could deal with the anisotropy
problem. A prior research [49] collected a large dataset with
4,416 versions and 21,380 bug-related commits, which means
that each version contains about five bugs on average. In order to
avoid missing some bugs, conservatively, we set K as 10 for every
version in our experiments. If one review of a cluster appears in
reviews appeared before our suggested stopping time, it means
that reviews appeared before our suggested stopping time could
cover this cluster. If one review of a cluster appearing in the rest
reviews is the same or similar to one review in reviews appeared
before our suggested stopping time, we consider this cluster
could be covered by reviews appearing before our suggested
stopping time.

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on August 29,2023 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

TAN et al.: STRE: AN AUTOMATED APPROACH TO SUGGESTING APP DEVELOPERS WHEN TO STOP READING REVIEWS 4143

Result. With suggesting when to stop reading reviews, STRE
only misses one emerging bug: By using IDEA, we collected a
total of 13 emerging bugs in our studied apps. As the outputs
of IDEA are sentences, we obtain 13 groups of sentences,
which are corresponding to 13 emerging bugs. We find sentences
from seven emerging bugs that appeared before our suggested
stopping time. Therefore, following our suggested stopping time
would not miss these seven emerging bugs. For the remaining six
emerging bugs, we find reviews about five of the six emerging
bugs exist before the suggested stopping time, although these
reviews are not picked up by IDEA. Yet, these five emerging
bugs still will not be missed if following our suggested stopping
time and only one emerging bug will be missed. In total, only
one emerging bug is not covered before the suggested stopping
time. When using the baseline approach, sentences of only eight
emerging bugs are found before the stopping time; while the
other three bugs are not covered in the reviews before stopping
time and we could not find extra sentences about them before
the stopping time.

STRE only misses 5.14% of the bug-related reviews: After
clustering, we obtain 584 clusters of bug-related reviews from
five apps, where reviews of the 141 clusters of bug-related
reviews appear all after the suggested stopping time. In other
words, the stopping time suggested by STRE would cause
missing these bug-related reviews. We find 21 of the 141 clusters
of bug-related reviews are either misclassified or obscure. For
the remaining 120 clusters of bug-related reviews, we find same
or similar reviews about the 90 clusters of bug-related reviews
before the stopping time. Hence, we would only miss 30 clusters
of bug-related reviews in total and the missing rate is about
5.14%. As we only obtain 13 emerging bugs, this missing rate
could mitigate the occasionality of RQ conclusion.

STRE could cover 92.31% of emerging bugs. STRE only
omits one emerging bug while baseline approach leaves out
three ones. STRE could cover 94.86% of the clusters of bug-
related reviews.

RQ3: How much time could developers save by using our
algorithm?

Motivation: Since RQ1 and RQ2 have demonstrated that
STRE could retain almost all the important information, in
this research question, we would like to evaluate how much
time developers could save with STRE. Our approach could
complement existing classification-based and cluster-based re-
view categorization approaches and work in tandem to help
developers. Then we explore how much time developers may
save when using these methods with the help of STRE. We
also gauge whether the tool stops too early from the internal
perspective.

Approach: First, we calculate time that can be saved by
applying our approach.

Second, we select one classification-based approach [14] and
one cluster-based method [15] to show effort savings. For the
classification-based approach, it first splits reviews into sen-
tences as one review may contain more than one intention.

Then it classifies sentences into Information Giving, Information
Seeking, Feature Request, Problem Discovery, and Others. Since
developers only concern the first four meaningful categories,
we take the percentage of numbers of meaningful sentences in
the cut reviews provided by STRE and the raw reviews as the
tool-rate. We set one minus tool-rate as the effort savings. For the
cluster-based approach, i.e., CLAP, it first classifies reviews into
seven categories: functional bug report, suggestion for new fea-
ture, report of performance problems, report of security issues,
report of excessive energy consumption, request for usability
improvements, and other. Then CLAP extracts clusters from the
functional bug report and suggestion for new feature. For the next
four categories, CLAP takes them as cohesive clusters and does
not conduct cluster algorithms on them. However, in our studies,
we do not find any cluster by using CLAP. Thus, we record the
number of reviews from the next four categories (report of per-
formance problems, report of security issues, report of excessive
energy consumption, and request for usability improvements).
We take the percentage of numbers of reviews belonging to the
four categories in the cut reviews provided by STRE and the raw
reviews as the tool-rate. We set one minus tool-rate as the effort
savings.

Third, in order to evaluate whether our approach suggests to
stop reading reviews too early, leading to missing information,
we measure the covered information from the reviews that
appear before the suggested stopping time. We define a metric,
i.e., Information Coverage Rate (ICR) as follows:

ICR =

∑
SAT

∑
SET

(1)

where SAT means the contributed Score of an Appeared Top
word in a new version before the suggested stopping time. SET
is the contributed Score of an Existing Top word. Specifically,
we sum up scores of all top words in this version. The larger
value of ICR is, the more top words appear. In other words,
a larger value of ICR indicates that more review information
is covered by our approach. ICR can reveal whether reviews
that appear before the suggested stopping time could contain
enough information. Note that, to avoid bias of evaluation, this
evaluation metric is based on the topic model trained directly
from all of the reviews in the new version, instead of the historical
versions. In other words, the metric is used to measure before
the suggested stopping time, how much information from all the
reviews of the new version is covered.

Result. Our approach can reduce much time for reading re-
views: Fig. 4 shows the results of the suggested stop reading time
and the information coverage rate for each given new version in
the testing set of all apps. In Fig. 4, each sub-figure is the result
of a new version. The X-axis is elapsed time of the version and
the Y-axis is the information coverage rate. We provide data of
information coverage rates in our replication package. Table VI
shows our suggested stopping time and the total duration of
each version. The results show that our approach can save an
average time of 62.79%, 77.44%, 86.76%, 58.86%, and 56.49%,
for Zoom, YouTube, Amazon Shopping, Twitter, and Starbucks,
respectively. By looking closer at the data, we find that the time
saving rates of long versions are much higher than those of short

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on August 29,2023 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

4144 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 8, AUGUST 2023

Fig. 4. Illustration of evaluating whether our method is effective or not. The blue broken line is the ICR across the version time. The red dotted line is the time
when we stop.

versions. For the versions which last for more than 15 days, our
approach can save an average time of 88.57%, 98.33%, 95.55%,
91.06%, and 88.9%, for Zoom, YouTube, Amazon Shopping,
Twitter, and Starbucks, respectively. For example, in the third
version of Amazon Shopping, the version lasted for 28 days;

while our approach suggests stopping reading reviews slightly
after the first day. For the versions which last for less or equal
to 15 days, our approach can save an average time of 51.74%,
76.04%, 80.16%, 55.47%, and 45.68%, for Zoom, YouTube,
Amazon Shopping, Twitter, and Starbucks, respectively. For

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on August 29,2023 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

TAN et al.: STRE: AN AUTOMATED APPROACH TO SUGGESTING APP DEVELOPERS WHEN TO STOP READING REVIEWS 4145

TABLE IV
THE WORKLOAD COMPARISON OF TWO OTHER TOOLS BETWEEN USING STRE

AND NOT UTILIZING STRE

TABLE V
THE INFORMATION COVERAGE RATE (ICR) BY THE SUGGESTED STOPPING

TIME FOR EACH STUDIED APP

example, the fourth version of Twitter only lasted for one day
and even our approach suggests stopping reading reviews after
one day, the app updated to another version shortly. This feature
is satisfactory because it is more necessary for developers to stop
early when reading reviews of long versions. For the baseline
approach (see details of the approach in RQ2), it could save an
average time of 29.78%, 18.66%, 23.53%, 23.61%, and 49.73%,
for Zoom, YouTube, Amazon Shopping, Twitter, and Starbucks,
respectively. Obviously, the baseline approach could not save
as much time as STRE. If we classify reviews into several
categories first, the suggested stopping time may be too late,
which leads to less time saving from the technique. We utilize the
same classifier in RQ2 and focus on bug-related reviews in the
experiments. However, it just saves an average time of 54.14%,
62.58%, 78.59%, 33.11%, and 34.25%, for Zoom, YouTube,
Amazon Shopping, Twitter, and Starbucks, respectively. As we
first extracts categories from reviews, the information in each
category would be more sparse. The sparse information would
cause TSTs longer, so the suggested stopping time is delayed.
In addition, the mistakes from the classification approach may
also add noise into the process. The mis-classified reviews may
delay the suggested stopping time since the corresponding topic
may not appear again in the same category.

Our approach does not miss much topic-related review in-
formation: The results from Table V show that the average
of ICR across all the new versions in Zoom is 98.64%. The
majority of the ICR across versions of Zoom is over 0.9 and
only one version has an ICR less than 0.9 (0.899). Similarly,

TABLE VI
RESULTS OF THE SUGGESTED STOPPING TIME/TOTAL TIME (BY DAYS) OF ALL

STUDIED RELEASES OF THE APPS

the average of ICR in other four apps is 97.39%. The results
mean that most of the top words in each topic appear before
the cut-off line. Such results imply that at the stop reading time,
our approach can cover most of the topic-related information.
For the baseline approach, the average of ICR across all the
new versions are 99.35%, 99.81%, 100%, 95.12%, and 74.38%,
for Zoom, YouTube, Amazon Shopping, Twitter, and Starbucks,
respectively. For the first three apps, the baseline performs a little
better than STRE. However, the average of ICR of Starbucks
is extremely low, which reveals the instability. Furthermore,
STRE could save much more time. Our approach can save an
average time of 62.79%, 77.44%, 86.76%, 58.86%, and 56.49%,
for Zoom, YouTube, Amazon Shopping, Twitter, and Starbucks,
respectively. While the baseline approach could save an average
time of 29.78%, 18.66%, 23.53%, 23.61%, and 49.73%, for
Zoom, YouTube, Amazon Shopping, Twitter, and Starbucks,
respectively. In short, STRE covers similar or higher information
than the baseline, while suggesting a much earlier time. From
our perspective, the reason is that STRE makes full use of top
words which could be satisfactory metrics for information. By
contrast, the baseline approach is only based on the inflexible
similarity threshold.

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on August 29,2023 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

4146 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 8, AUGUST 2023

TABLE VII
THE INFORMATION OF THE FIVE INTERVIEWEES

STRE can save an average time of 62.79%, 77.44%, 86.76%,
58.86%, and 56.49%, for Zoom, YouTube, Amazon Shop-
ping, Twitter, and Starbucks, respectively, without missing
topic-related review information. Overall, STRE saves much
more time while covering similar or higher information than
the baseline.

VI. INTERVIEWS WITH DEVELOPERS

In Section V, we answer three RQs to evaluate the effec-
tiveness of our tool STRE. However, these studies may not
demonstrate how STRE can be used in the practice of mobile app
developers. Thus we conduct interviews with five experienced
developers. Three of them are professional app developers and
two of them are graduate students who had professional app
development before graduate studies. All of them worked in
different app development teams from different companies with
different experiences. Table VII shows the information of the
five interviewees.

To start our interviews, we explain our tool STRE to all
participants in detail and show results to them. Afterwards, five
questions was asked and answered. The first three questions are
about general mobile app development, and aim to understand
whether it agrees with requirement of STRE. The questions
include: question 1) How are app reviews used in your devel-
opment? question 2) Do mobile app developers use time as a
criterion for stopping reading reviews? question 3) Are there
any bugs that are not discovered by users long after the release
time?

The last two questions aim to understand practitioners’ per-
spectives particularly on the applicability of using STRE in prac-
tice. The last two questions are: question 4) To what extent may
STRE impact the practice of mobile app developers? question
5) Can STRE be integrated into the workflow of the mobile app
developers? The interviews last around 12, five, five, six, and
four minutes, respectively for each participants.

To analyze the contents of interviews systematically, we
conduct coding, which is the technique of qualitative methods.
Followed by Yang et al. [50], we first perform open coding. We
code every part of data with a label. Then two authors conduct
axial coding to condense these codes into categories for every
question.

The process and the information of reviews used in the app
development process agree with the requirement of STRE. For
question 1, we obtain two ways of using reviews by developers.
The Cohen’s and Fleiss’ kappa agreements of the two authors’

results are 0.7142 and 0.709 (substantial agreement [40], [41]),
respectively. Communicate: Developers utilize reviews to com-
municate with users:

Reviews could help us communicate with our users and collect usage
opinions.

Collect comments: They use reviews to collect comments:

First, they could reflect the popularity of our app. Second, we
could know users’ problems in time, and then make corresponding
improvements in product design and code development.

The answers show that developers do take reviews as a sig-
nificant source of information in their daily development.

For question 2, we obtain the affirmative answer and one factor
to affect the time. The Cohen’s and Fleiss’ kappa agreements
of the two authors’ results are 0.7142 and 0.709 (substantial
agreement [40], [41]), respectively. Read reviews after a fixed
time: Developers use time as a criterion for stopping reading
reviews:

We typically read reviews within the first two days after the releases
of apps.

App popularity: The popularity of apps affect developers’
schedules to read reviews:

The stopping time depends on the popularity of the app.

The confirmation on the use of time as a criterion signifies that
the lack of consideration on the factor of time in prior research
can be improved and complemented by our approach.

For question 3, we obtain three reasons why some bugs appear
long after the release. The Cohen’s and Fleiss’ kappa agreements
of the two authors’ results are 0.8625 and 0.862 (almost perfect
agreement [40], [41]), respectively. Rare use: Some bugs may
be posted long after the release time, which are used rarely:

Too few users could also conceal the bugs for a long time.

Complex: Complex combinations of features may generate
bugs, which appear after the release for a long time:

The bugs may be hidden if the testing cases are not complex.

User-imperceptible: Several bugs may be discovered after a
long time. However, these bugs can hardly be found by users:

Only professional bugs, such as the log4j bug, may happen after
a long time. The functional bugs, which may be detected by users,
would be posted quickly.

Some bugs may appear after the release for a long time.
However, from the interviewees’ responses, the number of these

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on August 29,2023 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

TAN et al.: STRE: AN AUTOMATED APPROACH TO SUGGESTING APP DEVELOPERS WHEN TO STOP READING REVIEWS 4147

bugs is very small. Thus these bugs may not affect the usability
of STRE.

STRE may be able to help developers improve their de-
velopment efficiency. For question 4, the two authors reach a
consensus. Improve development efficiency: Developers agree
that they could arrange their developing schedules or develop the
next version early based on the results of STRE:

First, it can help us know users’ opinions, especially about bugs.
Second, the tool can notify us when useful information fully appears.
Thus it can help us schedule the next stage of development tasks early.

Thus STRE could help developers get a more reasonable stop
time, rather than rely on their experience.

For question 5, the two authors reach an agreement. Help
read reviews: All the participants think that STRE could be
integrated into the workflow, especially when the app has large
amounts of reviews:

This tool can be useful when there is a lot of review data.

However, we do realize that the integration of STRE in real
development practices can be further evaluated by user studies
from real development, which will be considered in our future
research.

STRE could be integrated into app development and help
developers improve the development efficiency.

VII. THREATS TO VALIDITY

In this section, we discuss the threats to the validity of this
paper.

External Validity: We only select five subject apps to validate
our framework and our findings may not generalize to other
apps. However, STRE aims to suggest the stopping time to read
reviews based on the historical reviews, it could be applied to
other apps easily. In addition, to evaluate the robustness of our
approach, we choose five apps in different domains and collect
reviews across multiple versions.

We split reviews according to the release time of each app
compared to the date of reviews, which is not a precise mapping
for some reviews. The app store does not report the version of
a review, and we have to adopt this approximate method. We
discuss the influence in two scenarios, a review is about an older
version and a future version instead of the current version. In the
training phase, as our tool utilizes historical reviews to suggest
stopping time, and reviews of new versions could not appear in
advance. Thus we just discuss the scenarios in the testing phase.
For the first scenario, if the review’s topics are also covered
by other reviews in the old version, results from STRE are still
valid. If the review’s topics are unique and never covered by other
reviews in the old version, they would not affect the results of
STRE. Developers never read them, as they just read the reviews
before the release time of the next version. If the review’s topics
are not related to the current version. This means that we should
not suggest developers to even read this review. But our current
results on the time savings are not compromised. If the review’s

topics are covered by the reviews of the current version. Then
our results from STRE are still valid. For the second scenario,
it would never happen. When developers release a version, they
can use our approach STRE to check whether it is necessary
to stop reading reviews. At this point of time, the future version
does not exist, so there are not any reviews for the future version.
Thus, this direct segmentation would not affect our tool.

Internal Validity: First, the number of topics could influence
the results of the LDA algorithm. To reduce this influence, we
set an appropriate number according to the value of coherence.
Second, the choice of longest topic stability time plays a vital
role in the effectiveness of our approach. To get a good trade-off
between conservatism and sensibility, we remove values which
are deviated by one time the standard deviation in historical
topic stability times, then choose the longest one. Third, the
number of top words per topic may affect the performance of
STRE. On the one hand, if we use too many top words, nu-
merous low-informative words may reduce efficiency of STRE.
On the other hand, too few top words could not represent the
corresponding topic drastically. To make a good trade-off, we
utilize ten top words, as ten words contain most of the useful
information [36], [37].

Construct Validity: First, we directly take the results of LDA
(i.e., top words) as the indicator of information in reviews, these
words may not be able to represent the whole data. Since many
prior studies [12], [33], [34] have utilized the LDA-based method
to extract topics in reviews, we assume that these top words could
cover the information of reviews. In addition, our study results
indicate that the results of STRE (i.e., reviews that appear before
the suggested stopping time) contain enough useful information
for developers. We take the ICR metric as a proxy to evaluate the
condition of information coverage. But RQ1 and RQ2 also indi-
cate that STRE could retain adequate advantageous information
before the suggested stopping reading time.

Second, in Section V, we manually classify 170 reviews and
evaluate the reviews. Moreover, we extract emerging bugs by
hand. However, we follow the discussional mode to reduce
subjectivity. The eight bug-related missed reviews may contain
supplementary information for bug reproduction, which is a
significant part in bug fixes. However, our manual analysis of
RQ1 shows that the eight reviews do not contain supplementary
data for crash reproduction. We manually find the similar bugs
or feature requests before the suggested stopping time, which
may contain some bias. However, reviews are short texts and
the two similar reviews may be posted by different rhetorics,
so it may be hard to use textual similarity to find the similar
bugs or feature requests. For example, “I can’t see the screen”
and “The background disappears” may comment on the same
bug. Furthermore, two authors discuss the results to mitigate the
negative effects.

Third, we do not find any cluster when conducting the comple-
mentary experiments using CLAP in RQ3. However, this result
may not have a significant impact on our study, since we just
utilize CLAP to demonstrate that STRE can complement other
approaches. However, the outcome of our evaluation may still
be affected by the quality of the external tool such as CLAP.
We use a classification algorithm to find bug-related reviews

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on August 29,2023 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

4148 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 8, AUGUST 2023

in RQ2. The algorithm may cause some mistakes. However, we
manually read reviews of 141 bug clusters which all appear after
the suggested stopping time. In the future, we will conduct STRE
in the real production environment to complement our work.

VIII. RELATED WORK

Cruz et al. [51] found automated testing is significant to apps,
which could help decrease issues. App reviews can also be
incorporated to contribute to the success of apps [6]. Al-Subaihin
et al. [10] investigated how app stores influence software en-
gineering tasks, which elaborates on the value of reviews for
developers. Because of reviews’ unstructured nature and varying
quality, researchers proposed many methods to help developers
analyze reviews more effectively. We consider that these meth-
ods can be divided into two sets (1) classification-based and (2)
extraction-based ones. Our work is different from these studies,
because we aim to help developers decide when to stop reading
reviews.

A. Classification-Based Methods

To help developers filter out the useless information, several
researchers categorize reviews. The intuition is that developers
could directly extract the specific information.

Maalej and Nabil [52] proposed a method to classify reviews
into bug reports, feature requests, user experiences, and ratings
by introducing probabilistic techniques and heuristics. Pagano
and Maalej [5] analyzed more than one million reviews from
Apple Store. They manually investigated these reviews and
identified 17 topics. Based on Pagano and Maalej’s research,
Panichella et al. [14] presented a taxonomy to classify app
reviews into categories relevant to software maintenance and
evolution using Natural Language Processing, Sentiment Anal-
ysis, and Text Analysis. The categories in their taxonomy include
Information Giving, Information Seeking, Feature Request, and
Problem Discovery. They think that this method could be useful
in extracting not only sentences which mention specific topics,
but in understanding the intentions of users concerning the men-
tioned topics. Guzman et al. [53] found that user feedback from
Twitter contains information about requirement engineering and
software evolution. They utilized Decision Trees and Support
Vector Machines (SVMs) to automatically identify whether
tweets are relevant for software companies. Chen et al. [16]
presented AR-Miner, which used a topic modeling algorithm to
help developers prioritize the most informative app reviews.

Beyond simple classification or prioritization, two researches
proposed summarising approaches to reduce the number of
reviews. Noted that their basis is still classification algorithms.
Di Sorbo et al. [8] proposed a tool named SURF, which could
summarize thousands of reviews and generate an interactive,
structured, and condensed agenda of recommended software
changes using sophisticated summarization techniques. SURF
contains a two-level classification (1) review topic (e.g., UI
improvements, security/licensing issues, etc.) (2) maintenance
task (e.g., bug fixing, feature enhancement, etc.). Jha et al. [54]
presented a lightweight tool named MARC 2.0. This tool first

used semantic role labeling to classify reviews into feature re-
quests, bug reports, and otherwise. Then it provided four classic
extractive text summarization algorithms for users.

B. Extraction-Based Methods

Since developers still need to face large amounts of reviews
after applying classification-based methods, several researchers
proposed extraction-based methods. These methods could ex-
tract development-related information more directly.

To help developers compete with other apps, Assi et al. [55]
presented FeatCompare to identify high-level features from re-
views. Villarroel et al. [7] proposed CLAP, which contains three
steps. First, CLAP classifies the reviews. Then it divides the
reviews into different clusters. At last, it prioritizes the clusters
of reviews automatically. Scalabrino et al. [15] presented an
extension of CLAP. They provided a more fine-grained catego-
rization, expanded their experiments, and gave more details of
the tool.

Zheng et al. [1] proposed iFeedback, which could perform
real-time issue detection based on user feedback texts. iFeedback
contained two steps (1) building service runtime indicators and
(2) detecting machine learning-based issues. They first applied a
specific-tailored natural language processing approach to gener-
ate tremendous indicators and then filtered out useless ones with
rule-based methods. Finally, they utilized a 2-class classification
model to perform anomaly detection and then clustered them.

Guo et al. [56] presented an approach named Caspar, which
could extract and synthesize user-reported mini stories about
app problems from reviews. They assume that users’ interactions
have two types of events: user actions and associated app behav-
iors, which each pair can be combined into a mini story. They
utilized sophisticated natural language processing techniques
to extract ordered events from app reviews. They also train an
inference model to automatically predicts possible app problems
for different use cases.

Gao et al. [12] proposed an LDA-based tool named IDEA,
which aimed to identify emerging app issues effectively based
on app reviews. They defined the emerging bugs as follows: an
issue in a time slice is called an emerging issue if it rarely appears
in the previous slice but is mentioned by a significant proportion
of reviews in the current slice. However, due to its inherent
randomness, IDEA is not stable. Gao et al. [11] presented
DIVER, an efficient and reliable emerging bugs detecting tool,
which had been successfully detected 18 emerging issues of
WeChat’s Android and iOS apps in one month.

Above approaches could help developers analyze app reviews
more effectively. Such as classification-based approaches [14],
[52], aim to allow developers to focus on meaningful reviews.
Specifically, they split reviews into some categories, such as
bugs, feature requests, praises, etc. They assume that the classi-
fication could help developers get the reviews they want quickly.
Furthermore, some cluster-based methods [7], [15] prioritize
the clusters of reviews to be implemented. However, they do
not consider that developers should stop reading reviews to
work for the next version at a certain point. Thus we think that
our approach can complement existing approaches and work in

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on August 29,2023 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

TAN et al.: STRE: AN AUTOMATED APPROACH TO SUGGESTING APP DEVELOPERS WHEN TO STOP READING REVIEWS 4149

tandem to help developers. Specifically, our tool can suggest that
developers stop reading reviews, then developers could utilize
the other methods (e.g. classification-based and cluster-based
approaches) to extract valuable information which could help
developers maintain and improve their apps.

IX. CONCLUSION

Reviews are crucial data for developers, as they contain large
amounts of useful information for app development. As much
repeated information is contained in reviews, developers could
just read the reviews which are uploaded around the release time
to save time. However, they could not predict when no more new
useful information will appear.

To help developers decide when to stop reading reviews,
we propose STRE. Study results demonstrate that STRE could
help developers save much time and reserve enough useful
information for developers. In the future, we plan to propose
more effective approaches to help developers analyze reviews
so that they can improve the efficiency of software development
and maintenance. For popular apps, it may be possible to read
reviews periodically even with several automated tools, so devel-
opers would split all reviews into huge batches. We will design
a tool to suggest developers when no more useful information
will appear in a batch.

ACKNOWLEDGMENTS

We would like to thank Mr. Husheng Yuan, who is the leader
of WeMUST development team at Macau University of Science
and Technology, for providing some useful suggestions to our
tool.

REFERENCES

[1] W. Zheng, H. Lu, Y. Zhou, J. Liang, H. Zheng, and Y. Deng, “iFeedback:
Exploiting user feedback for real-time issue detection in large-scale online
service systems,” in Proc. IEEE/ACM 34th Int. Conf. Automated Softw.
Eng., 2019, pp. 352–363.

[2] S. Krusche and B. Bruegge, “User feedback in mobile development,” in
Proc. 2nd Int. Workshop Mobile Develop. Lifecycle, 2014, pp. 25–26.

[3] T. Vithani and A. Kumar, “Modeling the mobile application develop-
ment lifecycle,” in Proc. Int. MultiConf. Eng. Comput. Scientists, 2014,
pp. 596–600.

[4] F. Palomba et al., “Crowdsourcing user reviews to support the evolution
of mobile apps,” J. Syst. Softw., vol. 137, pp. 143–162, 2018.

[5] D. Pagano and W. Maalej, “User feedback in the appstore: An em-
pirical study,” in Proc. IEEE 21st Int. Requirements Eng. Conf., 2013,
pp. 125–134.

[6] F. Palomba et al., “User reviews matter! Tracking crowdsourced reviews
to support evolution of successful apps,” in Proc. IEEE Int. Conf. Softw.
Maintenance Evol., 2015, pp. 291–300.

[7] L. Villarroel, G. Bavota, B. Russo, R. Oliveto, and M. Di Penta, “Release
planning of mobile apps based on user reviews,” in Proc. IEEE/ACM 38th
Int. Conf. Softw. Eng., 2016, pp. 14–24.

[8] A. Di Sorbo et al., “What would users change in my app? Summarizing
app reviews for recommending software changes,” in Proc. 24th ACM
SIGSOFT Int. Symp. Foundations Softw. Eng., 2016, pp. 499–510.

[9] L. Yu, J. Chen, H. Zhou, X. Luo, and K. Liu, “Localizing function errors in
mobile apps with user reviews,” in Proc. IEEE/IFIP Int. Conf. Dependable
Syst. Netw., 2018, pp. 418–429.

[10] A. A. Al-Subaihin, F. Sarro, S. Black, L. Capra, and M. Harman, “App
store effects on software engineering practices,” IEEE Trans. Softw. Eng.,
vol. 47, no. 2, pp. 300–319, Feb. 2021.

[11] C. Gao et al., “Emerging app issue identification from user feedback:
Experience on wechat,” in Proc. IEEE/ACM 41st Int. Conf. Softw. Eng.:
Softw. Eng. Pract., 2019, pp. 279–288.

[12] C. Gao, J. Zeng, M. R. Lyu, and I. King, “Online app review analysis for
identifying emerging issues,” in Proc. 40th Int. Conf. Softw. Eng., 2018,
pp. 48–58.

[13] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J.
Mach. Learn. Res., vol. 3, pp. 993–1022, 2003.

[14] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora, and H.
C. Gall, “How can I improve my app? Classifying user reviews for software
maintenance and evolution,” in Proc. IEEE Int. Conf. Softw. Maintenance
Evol., 2015, pp. 281–290.

[15] S. Scalabrino, G. Bavota, B. Russo, M. Di Penta, and R. Oliveto, “Listening
to the crowd for the release planning of mobile apps,” IEEE Trans. Softw.
Eng., vol. 45, no. 1, pp. 68–86, Jan. 2019.

[16] N. Chen, J. Lin, S. C. Hoi, X. Xiao, and B. Zhang, “AR-miner: Mining
informative reviews for developers from mobile app marketplace,” in Proc.
36th Int. Conf. Softw. Eng., 2014, pp. 767–778.

[17] Y. Man, C. Gao, M. R. Lyu, and J. Jiang, “Experience report: Understand-
ing cross-platform app issues from user reviews,” in Proc. IEEE 27th Int.
Symp. Softw. Rel. Eng., 2016, pp. 138–149.

[18] S. Bird, E. Klein, and E. Loper, Natural Language Processing With Python:
Analyzing Text With the Natural Language Toolkit. Sebastopol, CA, USA:
O’Reilly Media, Inc., 2009.

[19] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor, “Software traceability
with topic modeling,” in Proc. IEEE/ACM 32nd Int. Conf. Softw. Eng.,
vol. 1, 2010, pp. 95–104.

[20] D. Binkley, D. Heinz, D. Lawrie, and J. Overfelt, “Understanding LDA
in source code analysis,” in Proc. 22nd Int. Conf. Prog. Comprehension,
2014, pp. 26–36.

[21] C. Bird, T. Menzies, and T. Zimmermann, The Art and Science of Analyzing
Software Data, Amsterdam, Netherlands: Elsevier, 2015.

[22] J. C. Campbell, A. Hindle, and E. Stroulia, “Latent dirichlet allocation:
Extracting topics from software engineering data,” in The Art and Science
of Analyzing Software Data, Amsterdam, Netherlands: Elsevier, 2015,
pp. 139–159.

[23] J. Garcia, D. Popescu, C. Mattmann, N. Medvidovic, and Y. Cai, “En-
hancing architectural recovery using concerns,” in Proc. ACM Int. Conf.
Automated Softw. Eng., 2011, pp. 552–555.

[24] V. Garousi and M. V. Mäntylä, “Citations research topics and active
countries in software engineering: A bibliometrics study,” Comput. Sci.
Rev., vol. 19, pp. 56–77, 2016.

[25] H. Hemmati, Z. Fang, M. V. Mäntylä, and B. Adams, “Prioritizing manual
test cases in rapid release environments,” Softw. Testing Verification Rel.,
vol. 27, no. 6, 2017, Art. no. e1609.

[26] A. Hindle, C. Bird, T. Zimmermann, and N. Nagappan, “Relating require-
ments to implementation via topic analysis: Do topics extracted from
requirements make sense to managers and developers?,” in Proc. IEEE
28th Int. Conf. Softw. Maintenance, 2012, pp. 243–252.

[27] L. Layman, A. P. Nikora, J. Meek, and T. Menzies, “Topic modeling of
NASA space system problem reports: Research in practice,” in Proc. 13th
Int. Conf. Mining Softw. Repositories, 2016, pp. 303–314.

[28] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshynanyk, and A.
De Lucia, “How to effectively use topic models for software engineering
tasks? An approach based on genetic algorithms,” in Proc. IEEE 35th Int.
Conf. Softw. Eng., 2013, pp. 522–531.

[29] X. Sun, X. Liu, B. Li, Y. Duan, H. Yang, and J. Hu, “Exploring topic models
in software engineering data analysis: A survey,” in Proc. IEEE/ACIS 17th
Int. Conf. Softw. Eng. Artif. Intell. Netw. Parallel/Distrib. Comput., 2016,
pp. 357–362.

[30] S. W. Thomas, B. Adams, A. E. Hassan, and D. Blostein, “Validating the
use of topic models for software evolution,” in Proc. IEEE 10th Work.
Conf. Source Code Anal. Manipulation, 2010, pp. 55–64.

[31] D. M. Blei, “Probabilistic topic models,” Commun. ACM, vol. 55, no. 4,
pp. 77–84, 2012.

[32] J. Uys, N. Du Preez, and E. Uys, “Leveraging unstructured information
using topic modelling,” in Proc. IEEE Portland Int. Conf. Manage. Eng.
Technol., 2008, pp. 955–961.

[33] E. Noei, F. Zhang, and Y. Zou, “Too many user-reviews, what should
app developers look at first?,” IEEE Trans. Softw. Eng., vol. 47, no. 2,
pp. 367–378, Feb. 2021.

[34] T. Zhang, J. Chen, X. Zhan, X. Luo, D. Lo, and H. Jiang, “Where2Change:
Change request localization for app reviews,” IEEE Trans. Softw. Eng.,
vol. 47, no. 11, pp. 2590–2616, Nov. 2019.

[35] M. Röder, A. Both, and A. Hinneburg, “Exploring the space of topic
coherence measures,” in Proc. 8th ACM Int. Conf. Web Search Data
Mining, 2015, pp. 399–408.

[36] M. V. Mantyla, M. Claes, and U. Farooq, “Measuring LDA topic stability
from clusters of replicated runs,” in Proc. IEEE/ACM 12th Int. Symp.
Empirical Softw. Eng. Meas., 2018, pp. 1–4.

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on August 29,2023 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

4150 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 8, AUGUST 2023

[37] D. Newman, J. H. Lau, K. Grieser, and T. Baldwin, “Automatic evaluation
of topic coherence,” in Proc. Annu. Conf. North Amer. Chapter Assoc.
Comput. Linguistics: Hum. Lang. Technol., 2010, pp. 100–108.

[38] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Duplicate bug
reports considered harmful ... really?,” in Proc. IEEE Int. Conf. Softw.
Maintenance, 2008, pp. 337–345 .

[39] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20,
no. 3, pp. 273–297, 1995.

[40] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” Biometrics, vol. 33, pp. 159–174, 1977.

[41] K. L. Gwet, Handbook of Inter-Rater Reliability: The Definitive Guide
to Measuring the Extent of Agreement Among Raters. Gaithersburg, MD,
USA: Advanced Analytics, LLC, 2014.

[42] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, “What do mobile
app users complain about?,” IEEE Softw., vol. 32, no. 3, pp. 70–77,
May/Jun. 2015.

[43] S. Li, J. Guo, M. Fan, J.-G. Lou, Q. Zheng, and T. Liu, “Automated
bug reproduction from user reviews for Android applications,” in Proc.
IEEE/ACM 42nd Int. Conf. Softw. Eng.: Softw. Eng. Pract., 2020, pp. 51–
60.

[44] X. Franch and G. Ruhe, “Software release planning,” in Proc. IEEE/ACM
38th Int. Conf. Softw. Eng. Companion, 2016, pp. 894–895.

[45] P. Achananuparp, X. Hu, and X. Shen, “The evaluation of sentence
similarity measures,” in Proc. Int. Conf. Data Warehousing Knowl. Discov.,
2008, pp. 305–316.

[46] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” 2013, arXiv:1301.3781.

[47] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. theory,
vol. 28, no. 2, pp. 129–137, Mar. 1982.

[48] T. Gao, X. Yao, and D. Chen, “SimCSE: Simple contrastive learning of
sentence embeddings,” in Proc. Conf. Empirical Methods Natural Lang.
Process., 2021, pp. 6894–6910.

[49] D. E. Krutz et al., “A dataset of open-source Android applications,” in
Proc. IEEE/ACM 12th Work. Conf. Mining Softw. Repositories, 2015,
pp. 522–525.

[50] N. Yang, P. Cuijpers, R. Schiffelers, J. Lukkien, and A. Serebrenik,
“An interview study of how developers use execution logs in embedded
software engineering,” in Proc. IEEE/ACM 43rd Int. Conf. Softw. Eng.:
Softw. Eng. Pract., 2021, pp. 61–70.

[51] L. Cruz, R. Abreu, and D. Lo, “To the attention of mobile software
developers: Guess what test your app!,” Empirical Softw. Eng., vol. 24,
no. 4, pp. 2438–2468, 2019.

[52] W. Maalej and H. Nabil, “Bug report, feature request, or simply praise? on
automatically classifying app reviews,” in Proc. IEEE 23rd Int. Require-
ments Eng. Conf., 2015, pp. 116–125.

[53] E. Guzman, R. Alkadhi, and N. Seyff, “A needle in a haystack: What do
twitter users say about software?,” in Proc. IEEE 24th Int. Requirements
Eng. Conf., 2016, pp. 96–105.

[54] N. Jha and A. Mahmoud, “Using frame semantics for classifying and
summarizing application store reviews,” Empirical Softw. Eng., vol. 23,
no. 6, pp. 3734–3767, 2018.

[55] M. Assi, S. Hassan, Y. Tian, and Y. Zou, “Featcompare: Feature compari-
son for competing mobile apps leveraging user reviews,” Empirical Softw.
Eng., vol. 26, no. 5, pp. 1–38, 2021.

[56] H. Guo and M. P. Singh, “Caspar: Extracting and synthesizing user stories
of problems from app reviews,” in Proc. IEEE/ACM 42nd Int. Conf. Softw.
Eng., 2020, pp. 628–640.

Youshuai Tan received the BEng degree from Harbin
Engineering University, in 2021. He is currently
working toward the postgraduate degree with the
School of Computer Science and Engineering, Macau
University of Science and Technology (MUST), un-
der the supervision of Prof. Tao Zhang. His works
have been published in JSS and TR. His current
research interests include software engineering and
natural language processing.

Jinfu Chen recevied the BEng degree from the
Harbin Institute of Technology, China, the MSc de-
gree from the Chinese Academy of Sciences, China,
and the PhD degree from Concordia University,
Canada. He is currently an associate professor with
the School of Computer Science, Wuhan Univer-
sity, Wuhan, China. His research interests include
in empirical software engineering, software perfor-
mance engineering, performance testing, code clone
detection, and vulnerability detection. For more infor-
mation, please visit https://cs.whu.edu.cn/info/1019/
3521.htm.

Weiyi Shang is a Concordia University research
chair with the Department of Computer Science.
His research interests include AIOps, big bata soft-
ware engineering, software log analytics and software
performance engineering. He serves as a Steering
committee member of the SPEC Research Group.
He is ranked top worldwide SE research stars in a
recent bibliometrics assessment of software engineer-
ing scholars. He is a recipient of various premium
awards, including the SIGSOFT Distinguished paper
award at ICSE 2013 and ICSE 2020, best paper award

at WCRE 2011 and the Distinguished reviewer award for the Empirical Software
Engineering journal. His research has been adopted by industrial collaborators
(e.g., BlackBerry and Ericsson) to improve the quality and performance of their
software systems that are used by millions of users worldwide. Contact him at
shang@encs.concordia.ca; http://users.encs.concordia.ca/∼shang/.

Tao Zhang (Senior Member, IEEE) received the BS
degree in automation, the MEng degree in software
engineering from Northeastern University, China, and
the PhD degree in computer science from the Uni-
versity of Seoul, South Korea. After that, he spent
one year with the Hong Kong Polytechnic University
as a postdoctoral research fellow. Currently, he is an
associate professor with the School of Computer Sci-
ence and Engineering, Macau University of Science
and Technology (MUST). Before joining MUST, he
was the faculty member of Harbin Engineering Uni-

versity and Nanjing University of Posts and Telecommunications, China. He
published more than 80 high-quality papers at renowned software engineering
and security journals and concerences such as IEEE TRANSACTIONS ON SOFT-
WARE ENGINEERING, IEEE TRANSACTIONS ON INFORMATION FORENSICS AND

SECURITY, IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING,
IEEE Software, ICSE, etc. His current research interests include AI for software
engineering and mobile software security. He is a senior member of ACM.

Sen Fang received the MSc degree in electronics
and communication engineering from Central China
Normal University, in 2020. He is currently working
toward the PhD degree with the School of Com-
puter Science and Engineering, Macau University
of Science and Technology (MUST), under the su-
pervision of Prof. Tao Zhang. His research interests
include software engineering and NLP, particularly
using NLP technologies to build effective models for
representing the source code.

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on August 29,2023 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

https://cs.whu.edu.cn/info/1019/3521.htm
https://cs.whu.edu.cn/info/1019/3521.htm
http://users.encs.concordia.ca/~shang/

TAN et al.: STRE: AN AUTOMATED APPROACH TO SUGGESTING APP DEVELOPERS WHEN TO STOP READING REVIEWS 4151

Xiapu Luo received the PhD degree in computer
science from the Hong Kong Polytechnic University
and then spent two years with the Georgia Institute of
Technology as a postdoctoral research fellow. He is an
associate professor with the Department of Comput-
ing, Hong Kong Polytechnic University. His current
research interests include mobile/IoT security and
privacy, blockchain, network security and privacy,
software engineering, and Internet measurement. He
has received seven best paper awards (e.g., INFO-
COM’18, ISPEC’17, ISSRE’16, etc.) and one paper

received best paper nomination (i.e., ESEM’19).

Zijie Chen received the BS degree in software en-
gineering from the Beijing Institute of Technology,
Zhuhai, China, in 2020. He is currently working
toward the MS degree in applied mathematics and
data science with the School of Computer Science
and Engineering, Macau University of Science and
Technology, Macau, China. His research interests
include intelligent software engineering, Big Data,
and machine learning.

Shuhao Qi received the BEng degree from Harbin
Engineering University. He is a student at the Depart-
ment of Computer Science, University of Manchester,
Manchester, U.K. His research interests include data
mining, social network, and bioinformatics.

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on August 29,2023 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

