
Where2Change: Change Request
Localization for App Reviews

Tao Zhang ,Member, IEEE, Jiachi Chen, Xian Zhan , Xiapu Luo ,

David Lo , Senior Member, IEEE, and He Jiang ,Member, IEEE

Abstract—Million of mobile apps have been released to the market. Developers need to maintain these apps so that they can continue

to benefit end users. Developers usually extract useful information from user reviews to maintain and evolve mobile apps. One of the

important activities that developers need to do while reading user reviews is to locate the source code related to requested changes.

Unfortunately, this manual work is costly and time consuming since: (1) an app can receive thousands of reviews, and (2) a mobile app

can consist of hundreds of source code files. To address this challenge, Palomba et al. recently proposed CHANGEADVISOR that utilizes

user reviews to locate source code to be changed. However, we find that it cannot identify real source code to be changed for part of

reviews. In this work, we aim to advance Palomba et al.’s work by proposing a novel approach that can achieve higher accuracy in

change localization. Our approach first extracts the informative sentences (i.e., user feedback) from user reviews and identifies user

feedback related to various problems and feature requests, and then cluster the corresponding user feedback into groups. Each group

reports the similar users’ needs. Next, these groups are mapped to issue reports by usingWord2Vec. The resultant enriched text

consisting of user feedback and their corresponding issue reports is used to identify source code classes that should be changed by

using our novel weight selection-based cosine similarity metric. We have evaluated the new proposed change request localization

approach (Where2Change) on 31,597 user reviews and 3,272 issue reports of 10 open source mobile apps. The experiments

demonstrate that Where2Change can successfully locate more source code classes related to the change requests for more user

feedback clusters than CHANGEADVISOR as demonstrated by higher Top-N and Recall values. The differences reach up to 17 for

Top-1, 18.1 for Top-3, 17.9 for Top-5, and 50.08 percent for Recall. In addition, we also compare the performance of Where2Change

and two previous Information Retrieval (IR)-based fault localization technologies:BLUiR and BLIA. The results showed that our

approach performs better than them. As an important part of our work, we conduct an empirical study to investigate the value of using

both user reviews and historical issue reports for change request localization; the results shown that historical issue reports can help to

improve the performance of change localization.

Index Terms—User review, issue report, mobile app, change request localization, software maintenance

Ç

1 INTRODUCTION

AS the number of mobile devices (e.g., smartphones and
tablet computers) and their applications (apps) increases,

the task of maintaining mobile apps is becomingmore impor-
tant [1]. In online app stores such as Google Play Store, Apple
Store, and Windows Phone App Store, users are allowed to
evaluate each app by using scores (i.e., five stars) and posting
their reviews. These reviews are free-form text that may

include important information such as bugs that need to be
fixed for developers. These reviews express users’ problems
and suggestions, thus they can be used by developers to guide
software maintenance activities for improving user experi-
ence. In the process of software maintenance, changing the
source code to satisfy users’ requrements is an important task
[2]. In order to achieve the goal, developers’ first priority is to
locate source code that needs to be changed. However, it is
difficult for developers to read each review in order to find
the source files to be changed because popular apps usually
receive hundreds of reviews every day. Undoubtedly, this is a
time-consumingwork.

Previous Information Retrieval (IR)-based fault localization
technologies such as BugScout [3], BugLocator [4], BLUiR
[5], and BLIA [6] tend to utilize issue reports to search the
potential faulty source files or classes. However, these
approaches focus on desktop software, which is different with
mobile apps. According to the report at the literature [7], devel-
opers in apps first read user reviews, then resolve the issues
reported in the user reviews and update the apps. To verify
this process, we investigate top 200 most active developers in
top 100 popular mobile apps, we find that 85.7 percent res-
ponders depend on user reviews to find and resolve issues
from source code (See Section 6.2 for details). Therefore, when

� T. Zhang is with the Faculty of Information Technology, Macau
University of Science and Technology, Taipa, Macau, and also with the
Department of Computing, Hong Kong Polytechnic University, Hong
Kong. E-mail: tazhang@must.edu.mo.

� J. Chen is with the Faculty of Information Technology, Monash Univer-
sity, Clayton, VIC 3800, Australia, and also with the Department of Com-
puting, Hong Kong Polytechnic University, Hong Kong.
E-mail: jiachi.chen@monash.edu.

� X. Zhan and X. Luo are with the Department of Computing, Hong Kong
Polytechnic University, Hong Kong.
E-mail: {csxzhan, csxluo}@comp.polyu.edu.hk.

� D. Lo is with the School of Information Systems, Singapore Management
University, Singapore188065. E-mail: davidlo@smu.edu.sg.

� H. Jiang is with the School of Software, Dalian University of Technology,
Dalian, Liaoning 116024, China. E-mail: jianghe@dlut.edu.cn.

Manuscript received 2 Feb. 2019; revised 12 Sept. 2019; accepted 20 Nov.
2019. Date of publication 5 Dec. 2019; date of current version 12 Nov. 2021.
(Corresponding author: Xiapu Luo.)
Recommended for acceptance by R. Holmes.
Digital Object Identifier no. 10.1109/TSE.2019.2956941

2590 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-6272-4069
https://orcid.org/0000-0002-6272-4069
https://orcid.org/0000-0002-6272-4069
https://orcid.org/0000-0002-6272-4069
https://orcid.org/0000-0002-6272-4069
https://orcid.org/0000-0001-9814-5977
https://orcid.org/0000-0001-9814-5977
https://orcid.org/0000-0001-9814-5977
https://orcid.org/0000-0001-9814-5977
https://orcid.org/0000-0001-9814-5977
https://orcid.org/0000-0002-9082-3208
https://orcid.org/0000-0002-9082-3208
https://orcid.org/0000-0002-9082-3208
https://orcid.org/0000-0002-9082-3208
https://orcid.org/0000-0002-9082-3208
https://orcid.org/0000-0002-4367-7201
https://orcid.org/0000-0002-4367-7201
https://orcid.org/0000-0002-4367-7201
https://orcid.org/0000-0002-4367-7201
https://orcid.org/0000-0002-4367-7201
https://orcid.org/0000-0001-8674-4948
https://orcid.org/0000-0001-8674-4948
https://orcid.org/0000-0001-8674-4948
https://orcid.org/0000-0001-8674-4948
https://orcid.org/0000-0001-8674-4948
mailto:tazhang@must.edu.mo
mailto:jiachi.chen@monash.edu
mailto:csxzhan@comp.polyu.edu.hk
mailto:csxluo@comp.polyu.edu.hk
mailto:davidlo@smu.edu.sg
mailto:jianghe@dlut.edu.cn

previous IR-based fault localization technologies are employed
atmobile apps, theywill be confrontedwith an important chal-
lenge: these technologies cannot automate the process of analy-
sis on user reviews, thus they may ignore the problems
reported by users because the publication time of user reviews
is always ahead of the generation time of issue reports. This
fact results in that developers still spend more time manually
analyzing and understanding thousands of user reviews in an
app.We start a follow-up investigation of the above-mentioned
survey for the responders. In this investigation, we want to
know the average time of change request localization for each
new coming user review. 32 developers provide their answers,
as the result, the average time per developer to find the classes
that should be changed for a new user review is 1.9 working
days. This fact shows manual change request localization is a
time-consuming work due to a great number of user reviews
posed every day. Therefore, for mobile apps, a new fully auto-
mated change request localization technology toward user
reviewswill be of great benefit to developers.

Recently, Palomba et al. proposed CHANGEADVISOR [8].
This approach clusters user reviews based on similar user
requirements, and then locates the set of source code that
needs to be changed for each cluster of reviews. CHANGEAD-
VISOR measures the similarity between a cluster of reviews
and source code. When the similarity value exceeds a thresh-
old, the classes are returned. Unfortunately, many user
reviews lack of detailed information. This can cause CHANGE-
ADVISOR to miss the links between review clusters and the
corresponding source code that should be changed. Indeed,
our experiment finds that, using CHANGEADVISOR, a substan-
tial proportion of reviews cannot be located to any class in
source code (see Section 2 for details).

Let us consider a hypothetical scenario. As a developer of
the popular mobile app K-9 Mail, Mark’s daily work is to fix
faults and add features according to a great number of user
reviews. When he finds a fault or a feature request-related
review, hemust locate the source code that should be changed.
Obviously, this is a challenging and time-consuming task.
Mark expects to use a useful tool which can locate all changes
automatically. He first finds a tool CHANGEADVISOR. When
using CHANGEADVISOR, Mark gets a ranked list of classes that
link to some clusters of user feedback. ButMark finds that only
a part of feedback clusters can bemapped to the corresponding
classes. According to our investigation shown in Section 2.2 for
top-10 popular mobile apps, there are 38 clusters of user feed-
back that cannot be linked to the classes by using CHANGEAD-

VISOR. Themiss rate reaches up to 33 percent. For a real case in
K-9 Mail, there is a cluster-Topic-1 that describes the issue of
notifications that cannot be turned off. CHANGEADVISOR can-
not find any class which may link this issue. But in fact, the
invited experts1 verify that there are some classes such as
GlobalSettings related to this issue. Therefore, for these
clusters missed by CHANGEADVISOR, Mark needs to manually
identify these classes. This takes much effort and thus an
improved solution is desired. By analyzing CHANGEADVISOR,
we find that this tool does not adopt the historical issue reports.
This may be amajor reasonwhy CHANGEADVISOR cannot find
the classes for some issues described in user reviews.

According to our investigation shown in Section 6.2, 72.4 per-
cent developers still need to depend on historical issue reports
to locate source code classes related to change requests found
in user reviews. Therefore, historical issue reports can help to
change request localization due to the detailed descriptions for
issues. In order to help apps’ developers such asMark, it is nec-
essary to develop a new change request localization technology
which adopts historical issue reports for reducing themiss rate.

To address the above-mentioned challenge, in this paper,
we propose a novel approach named Where2Change to con-
duct change request localization for app reviews. First, we
extract the informative sentences (i.e., user feedback) contained
in user reviews. Second,we use a popular review analysis tool-
SURF [9] to automatically classify the user feedback into five
categories: information giving, information seeking, problem
discovery, feature request, and others. We focus on user feedback
in the problem discovery and feature request categories. Next, after
pre-processing the user feedback in above-mentioned two cat-
egories, we cluster them using HDP which presents the best
clustering performance among six popular clustering algo-
rithms. Third, we treat each cluster of user feedback as a query
to search for the classes that should be changed in source code.
Due to the small amount of information provided in user
reviews, we introduce historical issue reports to enrich the
user feedback extracted from user reviews. In particular, we
build themultiple links between a cluster of user feedback and
historical issue reports by computing their similarities via
Word2Vec [10]. If the similarity value is larger than a threshold,
an issue report can be used to enrich the cluster of user feed-
back. Finally, we propose a more accurate similarity metric
named weight-selection-based cosine similarity to measure the
similarity between an enriched version of comment cluster
and the source code. This metric considers the influence of dif-
ferent terms’ weights on the accuracy of change request locali-
zation so that the best weight values are used to measure the
similarity. At the end, for each cluster of user feedback,
Where2Change returns a ranked list of potentially classes to
be changed.Overall, our approach can overcome the limitation
of CHANGEADVISOR. For the case described in the last para-
graph, by using our approach, the issue report # 1110 is used to
enrich the cluster-Topic-1 due to its detailed description for the
problem of notifications in K-9 Mail. Then Where2Change

can easily find the class-GlobalSettings that should be
changed for satisfying users’ requirements. Therefore, it can
reduce theworkload of developers likeMark and consequently
improve the efficiency of issue resolution.

We conduct experiments on 31,597 user reviews and 3,272
issue reports collected from 10 open source mobile apps on
GitHub. The experimental results demonstrate that Where2-
Change can successfully locate more source code classes
related to change requests for more user feedback clusters
than CHANGEADVISOR due to the highest Top-N and Recall
values. The differences reach up to 17 for Top-1, 18.1 for Top-
3, 17.9 for Top-5, and 50.08 percent for Recall.We also conduct
Wilcoxon test to further compare the performance between
CHANGEADVISOR and Where2Change. The result indicates
that our approach can significantly improve the performance
of change request localization for user feedback by comparing
with CHANGEADVISOR. Moreover, we conduct the perfor-
mance comparison between our approach and two IR-based
fault localization technologies-BLUiR and BLIA. The results1. Please refer to Section 5.1: Building Ground Truth

ZHANG ETAL.: WHERE2CHANGE: CHANGE REQUEST LOCALIZATION FOR APP REVIEWS 2591

show that our approach performs better than them. In order to
explain why we use user feedback clusters as queries rather
than issue reports, we conduct the empirical study for user
reviews and issue reports, the results shown that issue reports
can help to improve the performance of change request locali-
zation but cannot replace user reviews to conduct this task for
mobile apps.

We summarize the contributions of our work as follows:

� Where2Change enriches user feedback extracted
from user reviews via similar issue reports. This
richer text enables Where2Change to perform better
in change localization than CHANGEADVISOR and
other fault localization approaches such as BLUiR

and BLIA.
� We propose a new textual similarity metric (i.e.,

weight selection-based cosine similarity) to produce
an accurate result of change request localization.

� We implement Where2Change in a tool to locate
source code classes that should be changed according
to user reviews on mobile apps. We evaluate the tool
and compare it with CHANGEADVISOR. The result
shows that our approach successfully locates more
source code classes related to change requests formore
user feedback clusters than CHANGEADVISOR and
keeps the similar accuracy in top-5 ranking results.

Roadmap. Section 2 introduces the background knowledge
related to our work and shows the motivation example in
order to indicate why we need to propose a new change
request localization approach based on user reviews formobile
apps. In Section 3,we detail the proposed change request local-
ization technology. Section 4 describes the research questions
that guide our experiment while Section 5 presents the experi-
mental results and Section 6 discusses how the proposed
approach performs better than the previous study. Section 7
introduces the threats to validity. In Section 8, we present the
related work, and Section 9 concludes the paper and introdu-
ces our futurework.

2 BACKGROUND AND MOTIVATING EXAMPLES

2.1 Background

In this subsection, we introduce information retrieval based
change request localization and a sample issue report for a
mobile app.

2.1.1 Information Retrieval (IR) Based Change Request

Localization

Information retrieval based change request localization
techniques attract wide attention due to their relatively low
computation cost and external resources requirements (i.e.,
only source code and software artifacts are required) [11].
In these IR approaches, each software artifact (e.g., issue
report and user review) is treated as a query, and the source
code (e.g., source files, classes, and methods) to be searched
as the document collection. Then, IR techniques rank the
documents by computing the textual similarities between
queries and documents. Finally, a list of ranked documents
are returned.

Previous studies such as [3], [4], [5], [6], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21] tend to utilize issue reports as

queries to locate source code related to software faults in tradi-
tional desktop software (e.g., Eclipse andMozilla). For mobile
apps, user reviews can also be used as queries to change
request localization. The reason is described in Section 6.2.

Fig. 1 shows the examples of three user reviews in Word-
press. When the users find the problems of Notifications in
Wordpress: “the users cannot do anything (e.g., remove opera-
tion and read operation) when the notifications appear”, they
posts some reviews in Google Play Store. With IR-based
change request localization techniques, researchers treat
these user reviews as queries to search the corresponding
classes that should be changed in order to help developers
resolve the reported issues. These classes related to three
user reviews are presented as follows:

ui.notifications.NotificationsDetailActivity.

java

......

private NotificationDetailFragmentAdapter build

NoteListAdapterAndSetPosition

(Note note, NotesAdapter.FILTERS filter)

{NotificationDetailFragmentAdapter adapter;

ArrayList<Note> notes = NotificationsTable.

getLatestNotes();

ArrayList<Note> filteredNotes = new ArrayList<>
();

NotesAdapter.buildFilteredNotesList

(filteredNotes, notes, filter);

adapter = new NotificationDetailFragmentAdapter

(getFragmentManager(), filteredNotes);

mViewPager.setAdapter(adapter); mViewPager.

setCurrentItem(NotificationsUtils.

findNoteInNoteArra y(filteredNotes, note.getId

()));

return adapter;}

Fig. 1. User reviews in Wordpress.

2592 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

2.1.2 Issue Reports

For each issue report in mobile apps, the main body is com-
posed of title and description. Title briefs what is the
issuewhile description details how the issue occurs. Fig. 2
shows an example of issue report (ID: #945) in WordPress. Its
title is “Crash on 2.6.1, IllegalStateException: Content view not yet
created-NotificationsListFragment.requestMoreNotifications”
which indicates the crash problemwhen invoking Notifica-

tionsListFragment.requestMoreNotifications. The
developer named “maxme” opened this issue report and
posted the description. The description includes the informa-
tion of stack traces in order to show the root reason how the
issue occurs.

We find that the above-mentioned issue report describes
a similar (yet different) issue to the reviews shown in Fig. 1.
Therefore, the issue report #945 (which contains more
detailed information) can help to locate source code to be
changed corresponding to the user reviews. We discuss it in
the next subsection.

2.2 Motivating Example

In this subsection, we discuss a real-world example that
motivates our research. We collected reviews, issue reports,
and their corresponding fixed files from the open-source
mobile apps. Since CHANGEADVISOR is, to the best of our
knowledge, the state-of-the-art work on mapping user
reviews to code, we run it and use the same data set to com-
pare it and our approach in Section 5. In detail, we down-
loaded 31,597 user reviews from Google Play Store, 3,272
issue reports and 4,207 classes from GitHub. Then we use
HDP [22] to cluster user feedback extracted from user
reviews and compute the similarities between each cluster
and classes for reproducing CHANGEADVISOR. As a result,
we observe the following issue shown in Fig. 3.

Consider a developerMarkwho is usingCHANGEADVISOR.
Even though Mark can verify the bug and feature request-
related reviews correctly using CHANGEADVISOR, he will
encounter a challenge. Fig. 3 shows an example of change
request localization for Topic-1 of the app K-9 Mail. We sup-
pose that Mark has selected the reviews that describe the real
issues from all reviews in Topic-1. We note that the similarity
value is less than a threshold (i.e., 0.52) for identifying

potential classes that should be changed. Thus, none of the
classes can be matched to Topic-1 via CHANGEADVISOR.
However, Mark finds that the reviews in Topic-1 can be
mapped to the classes by reading the related issue reports. He
still needs to manually locate the classes to be changed for
these reviews. For example, the review “Used to love this but
now can’t turn off the new mail notifications so uninstalling” is
related to issue report # 1110. Both of them present the prob-
lem of mail notifications that cannot be turn off. According to
the change history in GitHub, we find that the issue reported
in # 1110 is resolved by changing the source code file corre-
sponding to the class-GlobalSettings. Thus, the user feed-
back in Topic-1 could have been matched to the class, but
CHANGEADVISOR cannot find it. According to our analysis for
the results produced by CHANGEADVISOR, we find the num-
ber of clusters that are not linked to classes, which is shown in
Table 1. The data on last column indicates the total number of
issue reports (i.e., unlinked and linked reports) in each app.

In Table 1, 33 percent (38/115=33 percent) of clusters are
missed by using CHANGEADVISOR. Relatively high miss
rate results in that developers like Mark need to spend addi-
tional time to find the classes that should be changed for the
user feedback clusters missed by CHANGEADVISOR.

Based on the above observation and analysis, we have
the following motivation for this study:

Motivation. The purpose of CHANGEADVISOR is to return
a list of ranked classes to be changed for each cluster of user
feedback. However, not all feedback clusters can be mapped
to classes by CHANGEADVISOR. Developers still need to
locate the classes to be changed. This observation motivates

Fig. 2. An example issue report fromWordpress.

Fig. 3. Motivating example in K-9 Mail: change request localization.

TABLE 1
The Status of Number of Feedback Clusters Linked to Classes

when using CHANGEADVISOR

Project
feedback clusters linked to classes

unlinked linked total

AntennnaPod 4 8 12
Automattic 6 4 10
Cgeo 8 4 12
Chrislacy 3 5 8
K-9 Mail 4 10 14
OneBusAway 3 9 12
Twidere 3 9 12
UweTrottmann 3 11 14
WhisperSystems 2 91 11
Wordpress 2 8 10
Total 38 159 1152. The threshold value does not appear in the paper, it is found

when we run the replication package provided by Palomba et al.

ZHANG ETAL.: WHERE2CHANGE: CHANGE REQUEST LOCALIZATION FOR APP REVIEWS 2593

us to propose a new and effective approach to accurately
identify the classes that should be changed for satisfying
more user requests described in user reviews.

In order to achieve the above-mentioned goal, we con-
duct the investigation on real developers for the top-100
popular apps, and find that 72.4 percent developers still
rely on historical issue reports to locate source code classes
related to change requests found in user reviews. Therefore,
historical issue reports can facilitate change request localiza-
tion due to the detailed issues’ descriptions. To help apps’
developers such as Mark, it is necessary to develop a new
change request localization technology which adopts histor-
ical issue reports for reducing the miss rate.

Due to the aforementioned motivation, we propose a
two-phase approach to locate classes to be changed in
mobile apps according to user reviews. Section 3 describes
the design of this approach.

3 METHODOLOGY

In this section, we first show the overall framework of
Where2Change. Next, we detail how to implement change
request localization based on user reviews on mobile apps
in Where2Change.

3.1 Overall Framework

To locate source code classes related to change requests
appearing in user reviews on mobile apps, we propose
Where2Change, a two-phase method to retrieve the classes
to be changed for resolving the bugs and feature requests
described in user reviews. In the first phase, Where2Change
extracts the informative sentences from user reviews as user
feedback. It selects change requests-related user feedback
and enriches them using issue reports; in the second phase,
Where2Change recommends a list of ranked classes that
should be changed for each cluster of user feedback. Fig. 4
shows its overall framework. In this framework, the first

phase includes the steps (1-3) while the step (4) belongs
to the second phase.

In this framework, we first (1) utilize SURF [9], a state-of-
the-art review analysis tool, to extract the informative sen-
tences belonging to categories feature request and problem dis-
covery. Then we (2) cluster pre-processed user feedback via
Hierarchical Dirichlet Processes (HDP) which performs the
best among six clustering algorithms. Next, we (3) compute
the similarity between a cluster of user feedback and a pre-
processed issue report via Word2Vec. If the similarity value
exceeds the threshold, we treat the issue report as a change-
related issue report. In other words, we build a link between
a cluster of user feedback and the related issue report. We
use these related issue reports to enrich the cluster of user
feedback. These enriched versions of feedback clusters are
treated as queries. After we pre-process the source code, we
(4) compute the similarity between each query and the
potential classes to be changed via the proposed weight
selection-based cosine similarity. Finally, we get a ranked
list of classes for the cluster of user feedback.

We give an example to further explain the process of our
change request localization approach. For a user review
“Used to love this but not can’t turn off the new mail notifications
so uninstalling” shown in Fig. 3, by using SURF, we learn
that this review includes only one informative sentence
which belongs to the category Problem Discovery. Then we
extract it as user feedback. After pre-processing, we use
HDP to group the user feedback and other similar feedback
entries into Topic 1. Next, by using Word2Vec, we find that
there are some issue reports such as #1662 and #1110 linked
to them because the similarity score is more than a thresh-
old value (i.e., 0.4). We use these issue reports to enrich the
cluster. Finally, we compute the similarity scores between
the different versions of enriched feedback clusters and the
classes that should be changed. As a result, we get a global
ranked list of all potential classes with the similarity scores.

In the following subsections, we show how to implement
the novel change request localization approach step by step.

Fig. 4. Overall framework of Where2Change for user reviews in mobile apps.

2594 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

3.2 Selecting Change Request-Related
User Feedback

User reviews provide rich information that can facilitate the
development andmaintenance ofmobile apps, however, they
often include a lot of uninformative data that should be elimi-
nated. To resolve the problem described in Section 1, we first
choose change request-related user feedback extracted from
user reviews that describe real faults or feature requests.

We utilize SURF [9] to remove the uninformative data in
user reviews and find change-related user feedback. For
ARDOC [23] used inCHANGEADVISOR [8], Sorbo et al. pointed
out that this one-dimensional classification approach cannot
sufficiently utilize the available review information [9]. Due
to this reason, they developed SURF which can facilitate
developers to understand the contents of user reviews. SURF
relies on AR-miner [24] to filter out non-informative reviews
in our dataset, then it employs an Intent Classifier [23] com-
biningNatural Language Processing (NLP), SentimentAnaly-
sis (SA) andTextAnalysis (TA) techniques through aMachine
Learning (ML) algorithm for detecting sentences from the five
categories: Feature Request, Problem Discovery, Information Seek-
ing, Information Giving and Other. Finally, SURF uses a sen-
tence selection and scoring mechanism to generate the
summaries.

Because we focus on change-related user feedback, we
only collect the sentences in the categories Problem Discovery
and Feature Request to generate the queries. The summaries
produced by SURF are used to help the invited developers
create the ground truth (See Section 5.1).

In order to ensure the classification is acceptable, we verify
whether all user feedback classified into the categoriesProblem
Discovery and Feature Request really belongs to them. The sec-
ond author and the third author are responsible for verifying
whether the user feedback describes a real fault or a feature
request. They have more than 5-years experience in software
testing. They are also familiar with the apps’ user reviews and
issue reports. The user feedback is divided into two groups.
One person is invited to check one group and another person
is responsible for checking the remainder. In order to reduce
the possible bias, they exchange their data to conduct the veri-
fication again.We invite the software test expert fromAlibaba
Company to make a final decision when the verification
results are inconsistent. He has more than 15-years software
testing experience at Baidu andAlibaba. As a result, we get an
accuracy of 95.64 percent. Therefore, the classification results
is acceptable.

3.3 Clustering Change-Related User Feedback

Before clustering change request-related user feedback the
pre-processing for NLP is executed. Since user feedback is
written by end-users, the language is generally informal and
very noisy. The feedback is different from conventional soft-
ware artifacts like issue reports. Thus, they should be further
processed in order to better match issue reports by using our
approach. For this reason, we adopt the text processing tools
that contain python libraries NLTK3 and TEXTBLOB,4 and
the spell check tool-PYENCHANT library to implement the
following steps:

� Tokenization: An issue report or a piece of user feed-
back is split into a list of words (i.e., tokens), which
can be used to compute the textual similarity.

� Stopword removal: Stopwords like “the”, “a”, and “are”
are common words but they make no sense to change
localization. Therefore, these words are removed
according to the list of WordNet English stop words.
We maintain this list at https://github.com/Jiachi-
Chen/ReviewBugLocalization. Note that the pred-
icate negatives such as “aren’t”, “isn’t”, “can’t” are
also appeared in this list, which are removed.

� Stemming: The words are transformed to their basic
forms (i.e., stems). For example, “running” is changed
to “run”, and “bugs” is changed to “bug”.

� Lemmatization: It is the process of grouping together
the inflected forms of a word so that they can be ana-
lyzed as a single item, identified by the word’s lemma.
Lemmatization is closely related to stemming. The dif-
ference is that a stemmer operates on a single word
without knowledge of the context, and therefore can-
not discriminate between words which have different
meanings depending on part of speech. For example, a
word “better” can be transformed to “good” when we
use lemmatization. But for stemming, it cannot con-
duct the transformation.

� Spelling correction: By using the spell check tool-
PYENCHANT library, the misspelled words appear-
ing in user feedback are corrected.

� Contractions expansion:We extend the possible contrac-
tions of English words in user feedback. For example,
the abbreviated form “It’s” becomes “It is”.

� Nouns and verbs filtering: We adopt a part of speech
(POS) tagging classification to identify the nouns
and verbs from user feedback and issue reports.
Only these words are considered to compute the fol-
lowing textual similarity because they are the most
representative words in the documents.

� Non-English characters filtering: We find that the ASCII
codes of the non-English characters are out of the
range of 65-90 and 97-122. Therefore, we utilize regular
expression to filter the non-English characters existing
in each word by matching the range of the ASCII
codes.

As a result, the process returns bag-of-words for user feed-
back.We use themas the input of the following steps.

We find that there are three clustering algorithms fre-
quently utilized in the research articles5 published in Soft-
ware Engineering (SE) field at the last 5 years. These
algorithms include Latent Dirichlet Allocation (LDA), K-
means, and Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN). Moreover, we also consider to
verify the performance of the three extended versions of
LDA: SentenceLDA, CopulaLDA, and HDP. By comparing
their performance on our data set, the result shows that
HDP performs the best among the above-mentioned cluster-
ing algorithms. Therefore, we select HDP to cluster the user
feedback. With regard to comparing process and result,
please refer to Section 5.

3. http://www.nltk.org
4. http://textblob.readthedocs.org/en/dev/

5. We only consider the research papers published in ICSE, FSE,
ASE, TSE, TOSEM, and EMSE

ZHANG ETAL.: WHERE2CHANGE: CHANGE REQUEST LOCALIZATION FOR APP REVIEWS 2595

https://github.com/Jiachi-Chen/ReviewBugLocalization
https://github.com/Jiachi-Chen/ReviewBugLocalization
http://www.nltk.org
http://textblob.readthedocs.org/en/dev/

When the process of topic modelling is finished, each
cluster is treated as a query to search the classes that need to
be changed.

3.4 Building a Link between Feedback Clusters
and Issue Reports

Most of users have not enough knowledge to understand pro-
gramdevelopment and bug fixing, thus user feedback usually
includes inadequate information related to change requests.
Therefore, directly computing the textual similarity between
the user feedback and classes can lead to low similarity
scores so that it is possible to result in the result like CHANGE-
ADVISOR that some change request-related reviews cannot
match the correct classes because the similarity score is lower
than the threshold. To avoid this situation, we use issue
reports that provide the detailed information of bugs and
feature requests as a bridge to build a link between feedback
clusters and classes to be changed so that we can use issue
reports to enrich user feedback.

Before enriching feedback clusters via issue reports, it is
necessary to refine these clusters because the clustering results
via algorithms are still far away from themanual classification
results (See Section 5). Note that we do not use the manual
classification results to replace the automated clustering
results due to the following two reasons. First, Where2-

Change is a semi-automated change request localization tool
which is developed to reduce the developers’ workload.
Thus, we only conduct the moderate manual refinement pro-
cess for feedback clusters; second, our purpose is to build the
accurate links between feedback clusters and issue reports
rather than directly compute the similarity scores between
feedback clusters and source code. By referring to the manual
classification results, we conduct the refinement process as
the following two steps:

� We remove the feedback entries which are very dif-
ferent from others in the same cluster.

� We add the appropriate feedback entries which have
the stronger relations with the most of feedback
entries in a cluster.

We adopt a method named “full voting” to complete the
aforementioned steps. In detail, we convoke the persons
who have the qualification to decide which feedback entries
should be removed/added. We grant seven persons the
right to vote. These persons include the first two authors of
our article, the developers who are invited to manually clas-
sify user feedback, and the expert who are responsible for
verifying the classification results. When all seven persons
come to an agreement, we conduct the refinement process
by removing/adding the corresponding feedback entries.
Fig. 5 shows the refinement process for the clustering results
via HDP. The small circles present the user feedback entries
which are clustered into the three difference groups with
the difference colors. Note that A1 is far from the original
cluster marked by the black color and close to another clus-
ter marked by the blue color. We have the same finding for
B1. When all seven persons also vote for removing them
from their original clusters and adding them into other clus-
ters, the refinement process is conducted. For example, the
user feedback entry “In other words, you cant reverse sort or
manually configure it either” describes the different problem

with other feedback entries such as “It doesn’t show up on my
phone except to say it’s been successfully installed” in the same
cluster. The former indicates a sorting problem of Antenna-
Pod while the latter entries describe the problems of Anten-
naPod on installation and downloading. All seven persons
also agree to remove the former entry and add it into a new
cluster. In the new cluster, this entry describes the similar
problem with other ones such as “No sorting You aren’t able
to sort podcast subscriptions or podcast episodes”. These entries
also describe the sorting problem of AntennaPod.

After conducting the refinement process, we build the
links between the user feedback clusters and the appropri-
ate issue reports to produce the enriched versions of feed-
back clusters in order to improve the accuracy of change
request localization.

We compute the textual similarity between a cluster of
user feedback and an issue report by utilizingWord2Vec [10]
which can help to locate more source code classes related
to change requests for more user feedback than other similar-
ity metrics such as Dice coefficient [25], tf�idf [26], andMicro-
soft Concept Graph (MCG) [27]. With regard to comparing
process and result, please refer to Section 5. Word2Vec aims
tomap aword into semanticword embedding. It takes a large
corpus of text as its input and produces a vector space, with
each unique word in the corpus being assigned a corres-
ponding vector in the space. We utilize Word2Vec with the
skip-gram model [28]. In k dimensions (k=100 in our work),
each word can be represented as the vector defined as fol-
lows:

vecðwordÞ������! ¼ hv1; v2; . . .; vki: (1)

Thus, a document can then be mapped into the space by

Cs ¼ uT �HW: (2)

Fig. 5. Refinement process for the clustering results.

2596 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

Here, uT is the vector of the TF-IDF weights of the words
in the document computed by the following formula:

TF � IDF weight ¼ tft;d � log
N

nt
; (3)

where tft;d is a frequency of term t in the document d. log N
nt

presents the inverse document frequency which is a mea-
sure of how much information the word provides. N is the
total number of documents while nt is the number of docu-
ments which contain term t.

HW is the word vector matrix. In this matrix, the ith line
represents the word vector of the word i. The matrix is con-
structed by concatenating the word vectors of all words in
the document. Via matrix multiplication, a document is
transferred to a vector of semantic categories, denoted as Cs.

When we get the word vectors of the cluster of feedback
clusteri and the issue report IRj, we use the cosine similar-
ity to compute their semantic similarity, which is defined by

CosineSimðclusteri; IRjÞ ¼
Pn

k¼1 vkivkjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1 v

2
ki

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1 v

2
kj

q ;

(4)

where vki and vkj indicate the weight of kth word in clusteri
and IRj, respectively. They are computed by formula (2).

When the similarity score is more than the threshold, we
treat the issue report as the feedback-related issue report.
Thus, the link between the cluster of user feedback and the
issue report is built. Note that the feedback cluster may link
to multiple issue reports.

After we get the links between the feedback cluster and
the issue reports, we use the issue reports to enrich the feed-
back cluster. As a result, we can get the multiple enriched
versions of this cluster of feedback. For example, if we use
the issue report IR1 to enrich the feedback cluster clusteri,
we can get the enriched feedback cluster Eci1 which is one
of the multiple enriched versions.

3.5 Change Request Localization Using Enriched
Cluster of User Feedback

Before conducting change request localization through
the enriched feedback clusters, we start a process of pre-
processing to remove noise data contained in source code.
We implement the same steps of pre-processing with user
feedback and issue reports. More precisely, we 1) separate
composed identifiers using the camel case splitting which
separates words on underscores, capital letters, and numeri-
cal digits base, 2) return capital letters to lower case, and 3)
remove special characters.

Classical cosine similarity does not consider the influence
of different words’ weights on the performance when we
use it to implement change request localization. Undoubt-
edly, some important words that may have low weights6 so
that the accuracy of change request localization is reduced.

In order to resolve this problem, we propose a weight
selection-based cosine similarity to select the best weight
value for each word in enriched cluster of user feedback

and classes to be changed so that we can obtain the best per-
formance of change localization. We present the new simi-
larity metric in Algorithm 1.

Algorithm 1.Weight Selection-based Cosine Similarity

Input: Ec: A set of enriched clusters of user feedback; C: A set
of potential classes that should be changed; Ir: A set of issue
reports; W

init
j
i
: initial weight of word j in Ci; stepsize: used

to adjust the weight of words; K: the number of classes we

will recommend.
Output:A ranked list of top-K classes to be changed.
1: W

last
j
i
=W

init
j
i
; //Initialization

2: While iteration times iter < 100 Do:
3: W

current
j
i
=W

last
j
i
;

4: For each issue report Iri in Ir:
5: CCi=correct classes to be changed (Ground Truth List);
6: Compute cosine similarity scores between Iri and all

classes usingW
current

j
i
;

7: For Ci is ranked at top-K in the output list:
8: Wcurrenti is the weight of each word in Ci;
9: If Ci is in CCi: Do nothing;
10: Else the weight of all common words=Wcurrenti -

stepsize;
11: End For
12: For Ci is ranked at from K+1 to the maximal number of

classes:
13: Wcurrenti is the weight of each word in Ci.
14: If Ci is in CCi:
15: the weight of all common words=Wcurrenti+stepsize;
16: Else Do nothing;
17: End For
18: End For;
19: W

last
j
i
=W

current
j
i
;

20: If theMRRcurrent > MRRprevious:
21: W

best
j
i
=W

current
j
i
;

22: End While and getW
best

j
i

23: Compute cosine similarity between Eci and all classes
usingW

best
j
i
.

24: return A ranked list of top-K classes to be changed;

Since each enriched cluster of user feedback is generated
by linking them with issue reports, we first compute the tex-
tual similarity scores between issue reports linked to user
feedback and source code classes to decide the best weights of
words when the number of iteration times achieves 100.7 At
each iteration, when a top-K class Ci in the output list is not a
correct class to be changed, we reduce the weight of all com-
mon words by subtracting a stepsize (i.e., 0.05). In the other
case, ifCi ranked at behind top-K (i.e., ranked at from topK+1
to the maximal number) is a correct class, we add the weight
of all commonwords by adding a stepsize. This process termi-
nates till the MRR score achieves the highest. MRR is a fre-
quently-used evaluation function in Information Retrieval-
based Change Request (or Fault) Localization. We show the
detailed definition and explanation at Section 5.1.

6. Due to the fewer occurrence, some important words may have
lower weight than other unimportant words.

7. We find that the results are not almost changed when the number
of iteration times is more than 100, thus we set the number of iteration
times is 100.

ZHANG ETAL.: WHERE2CHANGE: CHANGE REQUEST LOCALIZATION FOR APP REVIEWS 2597

We use the best weight of each word to compute cosine
similarity between each feedback cluster and source code clas-
ses in order to achieve the optimum performance of change
request localization so that it can ensure that more feedback
clusters can be linked to the correct classes that should be
changed.

For each enriched version8 (i.e., Ec11; . . . ; Ec1i) of the
feedback cluster-cluster1, we can get the ranked list of clas-
ses to be changed. For all enriched versions of the feedback
cluster, we get the final result as follows:

CLðcluster1Þ ¼ CLðEc11Þ \ CLðEc12Þ \ . . . \ CLðEc1iÞ;
(5)

where CLðcluster1Þ represents the final list of classes to be
changed for the cluster of user feedback cluster1. CLðEc1iÞ
stands for the list of ranked classes to be changed for an
enriched version Ec1i of the feedback cluster. Note that Ec1i
is enriched by the issue report IRi.

To fairly compare the performance of our approach and
CHANGEADVISOR, for each class in the final ranking list of a
feedback cluster (e.g., cluster1), we choose the highest simi-
larity score between it and all enriched versions as the final
ranking score.

4 RESEARCH QUESTIONS

We evaluate the proposed change localization approach from
four aspects. First, we examine whether we have selected the
best approach for each step (i.e., user feedback clustering,
feedback cluster enrichment, and class ranking) in our
approach using our data set (i.e., RQ1). Second, we evaluate
whether the proposed approach performs better than the pre-
vious studies including CHANGEADVISOR, BLUiR, and BLIA

(i.e., RQ2). Next, we analyze the importance of issue reports in
our approach (i.e., RQ3). Finally, we explain why we select
user feedback as queries rather than issue reports to conduct
change request localization (i.e., RQ4).

We answer RQ1 and RQ2 in Section 5, and answer RQ3
and RQ4 in Section 6.

� RQ1: For each step in our approach, do we select the best
method among alternative ones?

Motivation: 1) In the process of user feedback clus-
tering, we implement six clustering algorithms (i.e.,
LDA, sentenceLDA, CopulaLDA, HDP, K-means,
and DBSCAN) to group them. Thus, we need to find
which one performs the best and use it to generate
the clusters as the queries to search the classes that
need to be changed; 2) In the process of user feed-
back enrichment, we introduce three similarity met-
rics including Dice coefficient, tf�idf, and MCG to
build a link between a cluster of feedback and the
issue reports by replacing Word2Vec. Therefore, we
need to evaluate whether Word2Vec performs the
best when we use it to enrich user feedback clusters;
3) As a key part of Where2Change, we propose the
new similarity function named by weight selection-
based cosine similarity to measure the similarity

between an enriched user feedback cluster and the
classes to be changed. This novel similarity function
considers the influence of different weights of terms
on the performance of change localization so that the
best weight values are used to measure the similar-
ity. It is necessary to verify whether the newly pro-
posed similarity metric performs better than classic
cosine similarity.

Method: For Motivation 1), we use the evaluation
metrics Homogeneity, Completeness, and V score [29]
to compare the results of clustering algorithms with
gold standard which consists of the clusters generated
by the experienced developers manually. Then we
select the best one to cluster the user feedback. For
Motivation 2) and 3), we invite experienced developers
to manually build the ground truth which reports the
actual links between user feedback clusters and the
source code, thenwe can use these classes contained in
the ground truth to compare the Top�N , Precision,
Recall,MRR,MAP values for each project in our data
sets. According to the results of change localization, we
can know which metric is more suitable to find correct
issue reports for enriching user feedback clusters and
whether the weight selection-based cosine similarity
performs better than classic cosine similarity.

� RQ2: Does our approach outperforms others in terms of
the accuracy of change localization?

Motivation: 1) By using issue reports to enrich user
feedback contained in the clusters and utilizing the
proposed weight selection-based cosine similarity
function, we successfully implement Where2Change
to locate classes to be changed according to user
reviews. We should evaluate whether these new char-
acteristics in Where2Change can lead to higher accu-
racy of change localization than CHANGEADVISOR. 2)
In the literature [8], Palomba et al. compare the perfor-
mance of CHANGEADVISOR and BLUiR which is a
structured IR-based fault localization approach. Youm
et al. proposed BLIA which performs better than
BLUiR. Therefore, it is necessary to evaluate whether
our approach performs better thanBLUiR and BLIA.

Method: We can answer this research question by
comparing the Top�N , Precision, Recall, MRR,
MAP values between our approach and the previous
studies that include CHANGEADVISOR, BLUiR, and
BLIA for each project in our data sets.

� RQ3: Does the incorporation of issue reports help to boost
the effectiveness of Where2Change?

Motivation: Byusing Where2Change, we can locate
more source code classes that should be changed for
more user feedback clusters. Researchersmay be inter-
ested in the root causes. Since we adopt issue reports
to enrich user feedback contained in the clusters, it is
necessary to analyze how issue reports can help to
improve the performance of the proposed approach.

Method: We analyze the compositions of issue
reports in order to show how these compositions can
help to improve the performance of change request
localization. In order to demonstrate the importance of
issue reports in our approach, we compare the perfor-
mance of change request localization using our

8. Each enriched version is produced by a cluster of user feedback
and each issue report which links to the feedback cluster.

2598 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

approach that utilizes the enriched user feedback clus-
ters via issue reports and the performance of the
approach that only adopts original user feedback.

� RQ4: Why do we adopt user feedback rather than issue
reports as queries to conduct change localization?

Motivation: In the previous studies, researchers tend
to utilize issue reports as queries to perform change
request localization. Even though CHANGEADVISOR

also used user feedback to implement the same goal, it
does not give an answer for this question. Thus, in our
work, we should investigate the reason by deeply ana-
lyzing the different characteristics of user feedback
and issue reports formobile apps.

Method: We analyze the different characteristics of
user feedback and issue reports, and investigate their
generation frequency in each mobile app. According to
the result, we can explain why we adopt user feedback
as queries for locating classes related to change requests.

5 EXPERIMENT

5.1 Experiment Setup

We collect the user views, the issue reports, and the classes
from 10 open-source mobile app projects in GitHub. Note
that we only consider the closed (i.e., fixed) issue reports
because their descriptions are confirmed and effective. We
first download top-100 popular open source mobile apps
according to the stars’ ranking list in GitHub as our candi-
date projects, and then we filter out the projects which have
less than 50 issue reports and 1,400 reviews because a small
number of issue reports and reviews are not sufficient to
evaluate the performance of our approach and other meth-
ods. Finally, we select top-10 projects from the remaining
mobile apps. The scale of our data set is shown in Table 2.
In the first row, RE, RP, CS, and FB stand for user reviews,
issue reports, classes, and user feedback, respectively. For
Period, the format is day/month/year where “year” indicates
the time line in the CENTURY 21.

In our data sets, we have two projects (i.e., K-9 Mail and
WordPress) that have been used to evaluate CHANGEADVI-

SOR. We do not collect the data from other projects adopted
by CHANGEADVISOR because they do not meet our selection
criteria (e.g., small number of issue reports). The experimen-
tal result shows that our approach outperforms CHANGEAD-
VISOR in both projects that have been used in the evaluation
of CHANGEADVISOR and new projects.

In order to fairly compare our approach-Where2Change
and the baselines that include CHANGEADVISOR [8], BLUiR
[5], and BLIA [6], we adopt the same user feedback in the
categories Problem Discovery and Feature Request to imple-
ment them.

After we extracted user feedback from user reviews, we
cluster the user feedback as queries to implement the base-
lines. Specially for CHANGEADVISOR, we do not adopt the
default value defined in the online Appendix, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TSE.2019.2956941
[30]. Instead, we adjust the threshold value from 0.1 to 1 in
order to compare the performance of our approach and the
best performance of CHANGEADVISOR on our data set.

To compare Where2Change and baselines, we should
build a benchmark data set (i.e., ground truth). Since Palomba
et al. do not open the ground truth at any forum,9 it is difficult
to compare the results. Therefore, it is necessary to build a
high-quality ground truth which can be used to evaluate the
performance of our approach and baselines. Fortunately, we
find the followingway to create the ground truth:

Building Ground Truth: We also adopt the manual verifica-
tion method which is the same as the approach used in
CHANGEADVISOR. In detail, we invite four developers from
Zhuhai Duozhi Science and Technology Company Limited
to help us build the links between user feedback clusters
and source code classes. These developers have more than
10-years software programming and testing experience. In
addition, they are familiar with the mobile apps’ software
maintenance and testing process. We pay 100 RMB (equal to
14.5 USD) to each developer per working day. They rely on
the summaries produced by SURF to understand the user
feedback and build the links. In addition, to avoid the possible
omission for the links, they also refer to the contents of issue
reports and commits which can help them understand which
issues were mentioned and which source code classes were
changed by developers in the historical softwaremaintenance
process.After onemonth (22working days), theyhad finished
the task. Then we invite the senior software test specialist
from Alibaba Company to verify whether these source code
classes are linked to the given user feedback clusters accu-
rately. He has more than 15-years software testing experience
at Baidu andAlibaba. He has the right tomodify the errors by
discussing with the above-mentioned four developers.

TABLE 2
The Scale of our Data Set

Project # RE # RP # CS # FB Period

AntennaPod 2,089 114 350 125 21/09/12-21/12/16
Automattic 1,404 95 66 225 18/06/13-29/11/16
Cgeo 4,480 1,488 790 414 18/07/11-05/02/17
Chrislacy 1,477 153 152 200 16/02/13-27/06/14
K-9 Mail 4,480 58 529 1,109 18/03/15-05/02/17
OneBusAway 2,107 271 293 306 14/08/12-25/01/17
Twidere 2,120 117 610 486 07/07/14-05/02/17
UweTrottmann 4,480 114 335 369 03/07/11-26/01/17
WhisperSystems 4,480 209 702 346 22/12/11-06/02/17
Wordpress 4,480 653 612 1,339 07/03/13-08/02/17
All 31,597 3,272 4,439 4,919

TABLE 3
Data Scale of Ground Truth

Project CSlink CSoverall CLHDP AvgCSlink RAvgCSlink

AntennaPod 140 350 36 3.9 1.1%
Automattic 34 66 12 2.8 4.2%
Cgeo 726 790 20 36.3 4.6%
Chrislacy 88 152 8 11.0 7.2%
K-9 Mail 71 529 8 8.9 1.7%
OneBusAway 235 293 34 6.9 2.4%
Twidere 264 610 30 8.8 1.4%
UweTrottmann 120 335 20 6.0 1.8%
WhisperSystems 185 702 16 11.6 1.7%
WordPress 577 612 12 48.1 7.9%

9. These forums include journal articles, conference/workshop
papers, books, blogs, emails, etc.

ZHANG ETAL.: WHERE2CHANGE: CHANGE REQUEST LOCALIZATION FOR APP REVIEWS 2599

http://doi.ieeecomputersociety.org/10.1109/TSE.2019.2956941
http://doi.ieeecomputersociety.org/10.1109/TSE.2019.2956941

Finally, we get the ground truth for these projects. Table 3
shows the scale of the ground truth. In this table,CSlink shows
the number of classes linked to the user feedback clusters
while CSoverall represents the total number of classes in each
app of our data set. CLHDP indicates the number of user feed-

back clusters in each app. AvgCSlink is defined by CSlink
CLHDP

,

which stands for the average number of linked classes per
cluster. RAvgCSlink shows the ratio of the average number of
linked classes per cluster to the overall number of classes in
each app,which is defined by AvgCSlink

CSoverall
. We note that the ratio is

less than 5 percent for most of apps except Chrislacy and
WordPress in which the ratio is less than 8 percent. This fact
indicates that manual change request localization is a difficult
work because developers should select the small number of
ones linked touser feedback fromplenty of classes. Obviously,
it is a time-consuming task, fortunately, our approach can
automate this process so that it becomes easy for developers.

In order to guarantee the quality of the ground truth, we
invite the top-10 active developers who posted the greatest
number of comments in each app of our data set to verify
the correct links between user feedback clusters and source
code classes. We define two metrics that include hitting rate
and missing rate to evaluate the quality. The hitting rate
indicates howmany classes are correctly linked to user feed-
back clusters in the ground truth, which is defined by the
ratio of the number of correct links to the overall number of
links in the ground truth; and the missing rate presents how
many links between classes and user feedback clusters are
missed, which is defined by the ratio of the number of cor-
rect links missed by the developers when they build the
ground truth to the overall number of classes that should be
correctly linked to the user feedback clusters. As a result,
only one developer from Automattic gives a positive
response and are willing to help us verify whether all 34
classes are correctly linked to 12 user feedback clusters pro-
duced by HDP in the ground truth. Moreover, he also help
to check whether the ground truth may miss some links in
the remaining 32 (66-34=32) classes which are not linked to
any clusters by the developers. In the letter of reply, he
wrote “I have very interested in your current work so that I am
willing to help you check these links in Automattic. I want to try
Where2Changeas soon as possible.” In the end, he found that
33 classes are correct linked to the user feedback clusters
(i.e., the hitting rate=33/34=97.06%). In the remaining 32
classes, he found that there are 2 classes that should be
linked to the clusters (i.e., the missing rate=2/(33+2)
=5.71%). Overall, the result is acceptable and the low miss-
ing rate only has the slight influence for the results pro-
duced by our approach. Therefore, we confirm the
developers’ capacity for building the ground truth. When
we invite the developer from Automattic to continue check-
ing the links in other apps, he told us he is very busy and he
is not familiar with other apps. Therefore, it may be a threat
that we are not sure what the hitting rate and the missing
rate are in other apps. However, because of the case of
Automattic which has the similar characteristics with other
mobile apps [1], we believe that the threat is not big.

Pre-training Word2Vec: Mikolov et al. [10] point out that
Word2Vec should be trained on a large-scale data corpus.
Therefore, we cannot utilize our data set to train Word2Vec

due to its relatively small data scale (only 31,597 user
reviews and 3,272 issue reports). In order to guarantee
Word2Vec worked well, we collect a 12.2G data corpus
from Wikipedia10 to train Word2Vec. This large-scale data
corpus includes abundant words and their sematic forms.
Then we use pre-defined Word2Vec to implement cosine
similarity measure which is used to build the links between
user feedback clusters and issue reports.

We evaluate the performance of our approach and base-
lines by using the following metrics:

� Top-N: this metric counts the number of feedback
clusters in which at least one source code class
related to change request was found and ranked in
top-N (N=1, 3, 5). For examples, given a cluster of
user feedback, if the top-N ranking results contain at
least one class in the ground truth, we regard that
the bug or the feature request has be localized suc-
cessfully in the top-N rank.

� Precision: the metric is defined by TP
TPþFP . TP (i.e.,

True Positive instances) indicates the number of top-
5 instances (e.g., classes to be changed) recom-
mended correctly, FP (i.e., False Positive instances)
represents the number of top-5 instances recom-
mended incorrectly.

� Recall: the metric is defined by TP
TPþFN. FN (i.e., False

Negative instances) means the number of correct
instances that are not recommended at top-5 ranking
list by the approach.

� Mean Reciprocal Rank (MRR): this metric is defined as
the multiplicative inverse of the rank of first correctly
returned class within the top-5 results. Therefore,
MRR averages such measures for all queries in the
dataset, i.e., 1

jQj
PjQj

i¼1
1

Ranki
. Here, Ranki is the rank of

first correctly returned class within the top-5 results.
jQj is the total number of queries (i.e., clusters of
user feedback). The higher the MRR value is, the bet-
ter the performance of change localization is.

� Mean Average Precision (MAP): this metric is different
with MRR because it considers all ranked classes
rather than the first correct class for each query.
MAP is the mean of the average precision values for
all queries. The average precision of a single query q

is computed as AvgP ðqÞ ¼ PM
i¼1

P ðjÞ�relðjÞ
Npositive

. Here, j is

the rank in the list of returned top-5 results; M is the
total number of retrieved classes; relðjÞ is a binary
indicator to verify whether the ith class is a correct
object (i.e., the value is 1) or not (i.e., the value is 0);
Npositive presents the number of positive instances
(i.e., TP); and P ðjÞ is the precision at the given cut-

off rank j, which is defined as
Npositive in top j ranks

j .

Then, MAP is defined as

PjQj
k¼1

AvgP ðqkÞ
jQj where jQj is

the total number of queries.
Among these evaluationmeasures, Top-Nverifieswhether

an approach can successfully locate the source code classes
related to change requests for more user feedback clusters
while Recall verifies whether an approach can successfully

10. https://dumps.wikimedia.org/enwiki/latest/

2600 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

https://dumps.wikimedia.org/enwiki/latest/

locate more correct classes for the user feedback clusters. Pre-
cision, MRR, and MAP also mention the accuracy at top-5
ranking results. In our work, we care more about the Top-N
and Recall values because the results are related to our moti-
vation to verify whether our approach can locate more source
code classes related to change request for more user feedback
clusters thanCHANGEADVISOR.

Parameter Adjusting: In order to avoid adjusting excessive
parameters that may increase additional computing cost,
we design our approach with less parameters. In the first
phase, we adopt HDP which shows the best clustering per-
formance (See Section 5.2) to group user feedback. In HDP,
we do not mention (or set) the number of topics in advance
because it can group the elements based on their probability
distribution. Therefore, we need not to adjust the number of
topics. In fact, in our algorithm, we only tune one parame-
ter, i.e., ufeedback which is a threshold value to decide whether
the issue reports should be selected to link (or enrich) the
user feedback. We adjust it in the light of the performance
(i.e., MRR) of change request localization. We set the value
to 0.4 for achieving the highest arithmetic mean of MRR
scores for all projects in our data set.

Our experiment includes two parts: pilot study (See
Tables 6, 7, 8, 9, 10, 11, and 12) and real experiment (See
Table 21). In pilot study, we verify whether issue reports can
link user feedback and whether enriched user feedback can
improve the performance of change request localization.
Thus, we do not group the data according to the time frame.
In real experiment, we focus on implementing Where2-

Change in the real development environment. We utilize
the historical issue reports to enrich the newly submitted
user feedback in Where2Change. In the following sections,
we show the experimental results.

5.2 Answer to RQ1: Best Decision

In the process of user feedback clustering, we select the fol-
lowing six popular clustering algorithms to cluster the user
feedback:

� LDA: It is a type of topic model that uses groups of
topic words to explain sets of documents. In LDA,
each document in the corpus collection is presented
as a mixture of latent topics, and each topic is repre-
sented by a series of words and their occurrence
probability.

� SentenceLDA: It is an extension of LDA for incorpo-
rating part of text structure in the topic model. LDA
and SentenceLDA differ in that the latter assumes a
very strong dependence of the latent topics between
the words of sentences, whereas the former assumes
independence between the words of documents in
general. In SentenceLDA, the text spans can vary
from paragraphs to sentences and phrases depend-
ing on the different tasks’ purposes. Therefore it can
control the number of topics according to the differ-
ent text spans in the documents.

� CopulaLDA: It extends LDA to incorporate the topical
dependencies within sentences and noun-phrases
using copulas which include a family of distribution
functions which can offer a flexible way to model the
joint probability of random variables using only their

marginals. Using copulas can result in decoupling the
marginal distributions by the underlying dependency
so that it can help to improve the performance of LDA
by integrating simple text structure in the topic model.
Due to copulas that result in more flexibility than
assigning the same topic in each term of the sentence
which is illustrated in the performance difference
betweenCopulaLDA and SentenceLDA. The former is
more flexible and performs better.

� HDP: It is an extension of LDA. Different from LDA,
HDP does not need to confirm the number of topics
before starting a clustering process. It implements a
nonparametric Bayesian approach which iteratively
groups documents based on a probability distribution.

� K-means: As a classical clustering algorithm, it aims
to group the documents into k clusters in which each
document belongs to the cluster with the nearest
mean.

� DBSCAN: It is a density-based clustering algorithm,
which groups the documents lied in high-density
regions in the vector space. Different from K-means,
it does not require a parameter to define the number
of clusters before starting a clustering process. More-
over, it can find irregular-shaped clusters.

We implement the above-mentioned clustering algorithms
and apply them to our data set. Then, followed by the descrip-
tion at the literature [29], we compare their clustering perfor-
mance with gold standardwhich consists of the clusters of user
feedback generated by the manual way. We first invite the
developers whoworked in the appropriate app’s team to help
us cluster the user feedback via publicity mail addresses.
However, no one is willing to do this work. We receive a
developer’s response: “It looks like a very complicated and time-
consuming task, so I am afraid I cannot complete it even though you
can pay.” Therefore we adopt an alternative solution. In detail,
we invite the same four developers who help us to create the
ground truth (See Section 5.1). We also pay 100 RMB (equal to
14.5 USD) to each developer per day. After two weeks, they
had clustered all selected user feedback. Then we invite the
senior software test specialist from Alibaba Company to ver-
ify whether these user feedback entries were clustered accu-
rately. He has the right to modify the errors by discussing
with the above-mentioned four developers. Finally, the clus-
tering result is called “gold standard”.

For the evaluation process, we first use three external
metrics that include Homogeneity, Completeness, and V
score [29] to evaluate the algorithms’ performance. The met-
rics are introduced as follows:

� Homogeneity, Completeness, and V score:Homogeneity is
the ratio of user feedback in a single cluster belonging
to the same cluster of gold standard. Completeness
measures the ratio of user feedback in a same cluster
of gold standardwhich are assigned to the same cluster
produced by algorithms. The lower bound is 0 and the
upper bound is 1. V score is the harmonic mean
between Homogeneity and Completeness, which is

defined by 2� Homogeneity�Completeness
HomogeneityþCompleteness.

Table 4 shows the best results of the different clustering
algorithms adopting the appropriate number of clusters
shown in Table 5. Note that all values keep one decimal place.

ZHANG ETAL.: WHERE2CHANGE: CHANGE REQUEST LOCALIZATION FOR APP REVIEWS 2601

For example, the value ofHomogeneity for DBSCAN inAuto-
mattic is 1.54e-016, and we list its approximate value-0.0 in
the table. The values in the last line show the arithmeticmeans
of all apps for each algorithm. Since the arithmeticmeans con-
sider the influence of the different number of clusters to the
performance of the different clustering algorithms, we use it
to evaluatewhich cluster algorithmperforms the best. Among
the six clustering algorithms, HDP and DBSCAN can auto-
matically select the appropriate number of clusters to group
the user feedback. We find that HDP performs better than
DBSCAN. The values of Homogeneity and V score of the for-
mer improve that of the latter by up to 10.9 and 5.9 percent,
respectively. For someprojects such asAutomattic, UweTrott-
mann, and Wordpress, the values of Homogeneity are very
close to 0 when DBSCAN is adopted. We find that this algo-
rithm produces only one cluster for each of the above-
mentioned appswhileHDPproduces relativelymore number
of clusters which result in better clustering performance. By
comparing the best performances of other topic models that
include LDA, SentenceLDA, CopulaLDA when they select
the appropriate numbers of clusters, HDP also performs bet-
ter than them. Specially, the values of Homogeneity, Com-
pleteness, and V score of HDP improve that of LDA by up to
11.9, 7.3, and 9.4 percent, which performs the lowest among
all clustering algorithms.

Based on the above analysis and the values in Table 4, we
can get a conclusion that HDP performs the best among six

popular clustering algorithms, we select it to group the user
feedback.

Note that the arithmetic mean values of Homogeneity,
Completeness, and V score are all less than 25 percent. This
indicates that for lots of user feedback, the results produced
by the clustering algorithms are different from manual clas-
sification results. For example, the following two entries of
user feedback “It doesn’t show up on my phone except to say it’s
been successfully installed” (R1) and “In other words, you
cant reverse sort order or manually configure it either” (R2)
for AntennaPod are grouped by HDP into the same cluster
while they belong to different groups in the gold standard
(i.e., produced by manual clustering). On the contrary, R1
and another entry of user feedback “Gpodder integration
stopped working long ago, and now episode auto download doesn’t
work anymore” (R3) are grouped by HDP into the same clus-
ter in the gold standard, however HDP does not group
them together. Thus, the results produced by the clustering
algorithms are still not optimal. The quality and style of
user reviews vary greatly [7], [24], [31], which makes auto-
matic clustering of user feedback a difficult problem. How-
ever, this finding does not influence our conclusion on
which clustering algorithm can produce the closest result
with the gold standard.

Although the clustering algorithms that we consider in
this work are not optimal, the use of HDP helps in improv-
ing the accuracy of the main task that we investigate in this
work, i.e., localization of change requests for app reviews.

In order to verify which metric is the best to build a link
between a cluster of user feedback and the issue reports, we
first conduct a pilot study described in Section 5.1. Specifi-
cally, we use three metrics including Dice coefficient [25],
tf�idf [26], and MCG [27] to re-implement Where2Change
by replacing Word2Vec. Dice coefficient can be directly
used to compute the similarity between two documents,
and other three metrics are introduced to transfer the docu-
ments to different kinds of vectors so that they can be input
into cosine similarity measure [32] to compute the similarity
scores. We introduce them one by one as follows:

� Dice coefficient: Dice coefficient is a statistic used for
comparing the similarity of two samples, thus it can
be used to compute the similarity between a cluster
of change-related user feedback and an issue report.

TABLE 5
The Number of Clusters when the Clustering Algorithms Achieve

the Best Performance

Project The number of clusters

LDA SenLDA CopLDA HDP K-means DBSCAN

AntennaPod 6 16 10 36 24 10
Automattic 2 10 10 12 10 1
Cgeo 8 12 10 20 38 6
Chrislacy 16 6 14 8 14 15
K-9 mail 6 4 12 8 4 26
OneBusAway 4 16 16 34 16 14
Twidere 6 22 22 30 6 14
UweTrottmann 10 14 18 20 8 1
WhisperSystems 6 12 24 16 8 29
Wordpress 10 6 14 12 12 1

TABLE 4
Homogeneity, Completeness, V Score (x%) of Different Clustering Algorithms

Project LDA SenLDA CopLDA HDP K-means DBSCAN

H% C% V% H% C% V% H% C% V% H% C% V% H% C% V% H% C% V%

AntennaPod 9.1 12.9 10.7 29.5 24.5 26.7 20.3 20.9 20.6 48.3 32.6 38.9 37.0 27.3 31.5 15.3 28.2 19.9
Automattic 2.9 8.5 4.3 15.8 13.9 14.8 13.6 12.5 13.1 15.3 16.1 15.7 14.8 13.2 14.0 0.0 100.0 0.0
Cgeo 5.3 6.9 5.9 10.0 8.4 9.1 7.4 6.8 7.1 13.7 10.6 12.0 23.9 14.2 17.8 2.9 7.5 4.1
Chrislacy 24.3 16.9 19.9 7.2 7.2 7.2 15.2 10.9 12.7 7.6 10.8 8.9 23.5 17.0 19.8 20.0 23.2 21.5
K-9 mail 2.3 3.1 2.6 1.5 2.2 1.8 3.7 3.3 3.5 2.8 3.1 2.9 1.1 2.1 1.4 4.5 10.0 6.2
OneBusAway 4.0 6.8 5.0 13.9 11.0 12.3 13.5 11.1 12.2 23.1 16.6 19.3 14.7 12.2 13.3 7.7 13.8 9.9
Twidere 4.9 5.8 5.3 14.2 10.3 11.9 15.2 11.4 13.0 17.9 13.9 15.7 4.1 6.1 5.0 4.5 9.8 6.1
UweTrottmann 7.5 7.7 7.6 12.7 10.1 11.3 13.0 10.1 11.3 15.5 12.3 13.7 6.6 7.0 6.8 0.0 100.0 0.0
WhisperSystems 6.0 7.5 6.6 11.1 9.8 10.4 22.3 16.5 18.9 13.7 12.4 13.0 8.7 9.5 9.1 15.4 20.0 17.4
Wordpress 2.6 3.1 2.8 1.7 2.3 1.9 4.1 3.9 3.9 2.8 3.3 3.1 3.2 3.4 3.3 0.0 100.0 0.0
Arithmetic mean 9.3 8.8 8.8 14.0 11.5 12.6 13.6 11.0 12.1 21.2 16.1 18.2 19.3 14.1 16.2 10.3 18.3 12.3

2602 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

It is defined as follows:

Simðclusteri; IRjÞ ¼
jWordclusteri \WordIRj

j
minðjWordclusteri j; jWordIRj

jÞ ; (6)

whereWordclusteri is the set of words contained in the
cluster i, WordIRj

is the set of words contained in
issue report j, and the function min shown in the
denominator normalizes the similarity between the
cluster of feedback and the issue report via the num-
ber of words contained in the shortest document
containing the fewest words.

� tf�idf: tf�idf is a popular metric to represent docu-
ments as vectors of words. The value for each word
is its TF-IDF weight which is computed by formula
(3) shown in Section 3.4. When we get all words’ TF-
IDF weights, a document can be transferred to a vec-
tor of the TF-IDF weights. Then we can use the
cosine similarity measure (i.e., formula (4)) to com-
pute the textual similarity between the cluster of
feedback clusteri and the issue report IRj.

� MCG: MCG aims to map text format entities into
semantic concept categories with some probabilities. It
can also overcome the limitation in traditional token-
based models such as tf�idf that only compares lexical
words in the document. This metric captures the
semantics ofwords bymappingwords to their concept

categories. By using MCG, a word can be represented
as its semantic concept categories with probabilities.
For example, consider the word “Microsoft”, which
can be categorized into a large number of concepts
such as “company”, “developer”, and “software”.
Therefore, a word can be transferred to a concept vec-
tor so that a document can then be mapped into the
space by

Cd ¼ uT �HM; (7)

where uT is the vector of the TF-IDF weights of the
words in the document computed by formula (2)
and HM is the concept matrix. A concept matrix is
constructed by concatenating the concept vectors of
all words in the document. Via matrix multiplica-
tion, a document is transferred to a vector of concept
categories, denoted as Cd. In fact, the document is
mapped to the concept space by assigning a proba-
bility to each concept category to which the docu-
ment belongs. This probability is estimated by
summing up the corresponding probabilities of all
the words contained in the document.

After we get the concept vectors of the cluster of
feedback clusteri and the issue report IRj, we can
also use the cosine similarity defined by formula (4)
to compute their concept similarity.

TABLE 6
Top-N (T1, T3, T5) Values Comparison using Different Similarity Metrics for the Feedback Clusters Linked to Issue Reports

Project
Where2ChangeDice Where2Changetf �idf Where2ChangeMCG Where2Change

T1 T3 T5 T1 T3 T5 T1 T3 T5 T1 T3 T5

AntennaPod 18 31 32 11 27 30 23 32 32 29 35 35
Automattic 3 5 7 4 7 9 10 10 10 12 12 12
Cgeo 20 20 20 20 20 20 20 20 20 20 20 20
Chrislacy 2 4 4 4 7 7 6 8 8 7 7 7
K-9 Mail 0 2 3 1 3 5 3 5 6 5 6 6
OneBusAway 32 32 32 29 29 29 31 31 31 33 33 33
Twidere 19 23 25 20 24 26 27 30 30 25 28 28
UweTrottmann 11 18 19 10 25 26 15 28 29 21 28 28
WhisperSystems 14 15 15 9 14 14 13 15 15 15 16 16
Wordpress 9 9 9 12 12 12 11 11 12 12 12 12
Arithmetic mean 16.6 20.8 21.6 14.8 21.2 22.3 19.8 24.0 24.2 22.2 24.8 24.8

TABLE 7
Precision (P), Recall (R), MRR (MR), and MAP (MA) Values (%) Comparison using

Different Similarity Metrics for the Feedback Clusters Linked to Issue Reports

Project
Where2ChangeDice Where2Changetf�idf Where2ChangeMCG Where2Change

P R MR MA P R MR MA P R MR MA P R MR MA

AntennaPod 55.91 47.28 22.82 61.09 58.73 33.64 21.94 59.12 51.43 65.46 23.20 61.14 50.99 69.99 21.45 57.50
Automattic 54.17 48.15 20.47 63.82 54.84 62.97 30.05 75.45 45.00 66.67 30.16 73.12 42.22 70.38 31.72 76.03
Cgeo 84.76 26.89 40.82 92.09 90.91 13.60 41.89 93.92 84.98 32.48 40.70 91.93 85.00 35.96 39.62 90.05
Chrislacy 68.75 13.93 29.25 75.47 67.50 34.18 28.01 71.84 81.09 75.95 30.46 75.01 75.00 83.55 31.68 76.46
K-9 Mail 22.58 9.86 4.59 18.18 33.33 9.86 10.62 35.44 37.68 36.63 7.42 25.04 36.67 46.48 10.65 34.48
OneBusAway 75.36 52.53 42.92 96.14 90.28 32.83 44.60 99.05 68.25 65.16 42.38 94.96 67.86 67.18 42.39 95.01
Twidere 34.29 18.54 25.46 66.83 41.96 18.15 23.35 61.97 34.78 27.80 29.63 74.37 37.14 30.12 29.91 74.04
UweTrottmann 52.00 39.01 20.45 55.84 47.31 44.01 18.37 51.09 48.30 71.00 18.43 51.32 46.36 70.00 16.92 48.37
WhisperSystems 75.61 33.52 33.20 81.07 73.02 24.87 33.55 82.30 63.64 56.76 31.52 77.66 62.36 60.00 32.17 78.73
Wordpress 87.64 17.07 41.73 92.95 92.77 16.85 43.79 96.93 78.32 38.74 43.06 96.17 76.33 40.92 41.83 94.13
Arithmetic mean 60.68 35.25 29.38 72.41 65.18 29.96 29.75 72.86 57.34 54.66 30.18 73.37 56.61 57.58 29.84 72.63

ZHANG ETAL.: WHERE2CHANGE: CHANGE REQUEST LOCALIZATION FOR APP REVIEWS 2603

According to these three similarmetrics, our approach pro-

duces three values: Where2ChangeDice, Where2Changetf�idf ,
and Where2ChangeMCG. We evaluate the performance of
change localization in order to find the best metric. Table 6
shows the values of Top-N (N=1, 3, 5) while Table 7 shows the
values of Precision, Recall, MRR, and MAP for Where2-

Change and their varietas. Note that the results are produced
by evaluating the feedback clusters which can link to issue
reports. We do not consider the clusters unmatched to issue
reports, because in this section focuses on the performance of
our approach using the four similarity metrics to build the
links between feedback clusters and issue reports.

In Table 6, the arithmetic mean Top-N (N=1, 3, 5) values
of Where2Change are larger than that of other varietas .
Where2ChangeMCG is the second-best due to their arithmetic
mean Top-N values which are close to the values of
Where2Change. In Table 7, for the arithmetic mean of recall
values, Where2Change is the best while Where2ChangeMCG

is the second-best due to the slight difference (57.58%-
54.66%=2.92%); for the arithmetic mean of MRR and
MAP values, Where2ChangeMCG is the best but the differen-
ces with other metrics are not obvious. For Precision,
Where2Changetf �idf is the best but the differences with
Where2Change and Where2ChangeMCG are less than 9
percent.

We analyze the possible reasons for the evaluation results.
Since Word2Vec and MCG also preserve terms’ semantic and
syntactic relationships [10], [27], the feedback clusters can link
to more relevant issue reports. More detailed descriptions
about software faults and feature requests in these issue reports
result in that a greater number of change requests appearing in
feedback clusters are successfully located. Therefore, the Top-
N values of Where2Change and Where2ChangeMCG are much
larger than that of Where2ChangeDice and Where2Changetf

_idf

which do not consider the terms’ semantic concepts. The

precision values ofWhere2ChangeDice andWhere2Changetf
_idf

are slightly larger than that of Where2ChangeWord2Vec and
Where2ChangeMCG. The result reveals that our approach using
tf � idf andDice can recommend more correct classes in top-5
results than othermetrics. This fact indicates that the terms can-
not always match to other terms with the same or similar
semantic concepts. In other words, some terms may match to
the wrong terms which have the different meaning with them.
This reason results from the fact that the precision values of our
approach using Word2Vec and MCG is not higher than that

using tf _idf and Dice. However, according to our motivation
described in Section 2.2, we expect that the new change request
localization approach can locate more source code classes
related to change requests for more user feedback clusters.
Much larger Top-N and recall values demonstrate that
Word2Vec and MCG are appropriate candidate metrics to
implement our goal.

For each app in our data set, we find that not all issue
reports are linked to the clusters of user feedback. Table 8
shows howmany issue reports can be actually linked to feed-
back clusters when we use the different metrics. The data on
last column shows the total number of issue reports in our
data set shown in Table 2. In this table, we note that the num-
bers of issue reports linked to the feedback clusters using
Word2Vec and MCG are larger than that using Dice and
tf � idf . Because the former metrics consider the semantic
information of issue reports anduser feedback, a greater num-
ber of issue reports are linked to the clusters of user feedback.
In addition, we find that the number of issue reports linked to
feedback clusters using Word2Vec is more than that using
MCG. This finding explains that why our approach using
Word2Vec can successfully locate a larger number of clusters
of user feedback than that usingMCG (See Table 6).

In addition, we note that not all clusters can link to issue
reports. Table 9 shows the number of feedback clusters and
the ratio which cannot link to issue reports when using dif-
ference metrics. When using Word2Vec, the number of feed-
back clusters unmatched to issue reports is the smallest
while the number is the largest when using Dice. Overall,
the number of clusters not linked to issue reports is much
smaller than that linked to issue reports. Therefore, the
effect of their results to all evaluation results is limited.
Table 10 shows the Precision, MRR, and MAP values of our
approach using difference metrics for the feedback clusters
unmatched to issue reports. Our approach using Dice
shows the best performance than other metrics. The reason
is that there are largest number of feedback clusters not
linked to issue reports when using Dice. When using
Word2Vec, our approach performs the worst because there
are 5 projects that have no clusters unlinked to issue reports
and other 5 projects that have less than or equal to 3 clusters
unmatched to issue reports. This fact also demonstrates that
Word2Vec can help user feedback link more relevant issue
reports so that more user feedback clusters are linked to cor-
rect source code classes that should be changed. Therefore,

TABLE 8
Number of Issue Reports Linked to Feedback

Clusters when using Different Metrics

Project
RP linked to feedback clusters

RP
Dice tf � idf Word2Vec MCG

AntennnaPod 55 31 102 91 114
Automattic 7 20 70 45 95
Cgeo 541 89 1,307 1,115 1,488
Chrislacy 5 24 127 44 153
K-9 Mail 7 7 52 41 58
OneBusAway 95 30 258 222 271
Twidere 34 33 108 84 117
UweTrottmann 30 26 107 89 114
WhisperSystems 56 21 199 171 209
Wordpress 37 37 506 396 653

TABLE 9
Number of Feedback Clusters (ratio) Unmatched to Issue

Reports when using Different Metrics

Project
clusters (ratio) unmatched to issue reports

clusters
Dice tf � idf Word2Vec MCG

AntennnaPod 4(11.1%) 6(16.7%) 1(2.8%) 4(11.1%) 36
Automattic 5(41.7%) 3(25.0%) 0(0.0%) 2(16.7%) 12
Cgeo 0(0.0%) 0(0.0%) 0(0.0%) 0(0.0%) 20
Chrislacy 4(50.0%) 1(12.5%) 0(0.0%) 1(12.5%) 8
K-9 Mail 4(50.0%) 3(37.5%) 2(25.0%) 2(25.0%) 8
OneBusAway 2(5.9%) 5(14.7%) 3(8.8%) 1(2.9%) 34
Twidere 3(10.0%) 2(6.7%) 0(0.0%) 2(6.7%) 30
UweTrottmann 11(36.7%) 2(6.7%) 1(3.3%) 1(3.3%) 30
WhisperSystems 1(68.8%) 2(12.5%) 1(6.3%) 0(0.0%) 16
Wordpress 2(16.7%) 0(0.0%) 0(0.0%) 0(0.0%) 12

2604 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

we select Word2Vec to find the relevant issue reports for
enriching user feedback clusters so that it can improve the
performance of change request localization.

In our approach, we proposeweight selection-based cosine
similarity metric to compute textual similarity between
enriched user feedback clusters and classes to be changed
instead of classic cosine similarity metric. Therefore, we
should verify whether our approach using weight selection-
based cosine similarity metric (i.e., Where2Change) performs
better than that using classic cosine similarity metric (i.e.,
Where2Changecosine). We re-implement our approach using
classic cosine similarity metric with four similar metrics intro-
duced in Section 3. The result of performance for each project
in our data set is shown in Table 11.

In Table 11, we find that the Top-N values of our
approach using cosine similarity are slightly less than that
using weight selection-based cosine similarity (See Table 6).
This result indicates that the two similarity measures can
successfully locate the Top-N classes for the similar number
of user feedback clusters. However, we note that the Preci-
sion, Recall, MRR, and MAP values of our approach using
weight selection-based cosine similarity are much better
than that using cosine similarity. This fact indicates that
weight selection-based cosine similarity measure can help
our approach recommend more accurate classes in top-5
ranking results than cosine similarity measure. The major
reason is that weight selection-based cosine similarity
adopts the terms’ best weights to implement change request

localization so that it enhances the effect of important terms
to the performance, therefore, our approach using this met-
ric can get the higher accuracy (Precision, MRR, and MAP)
and Recall values than that using classic cosine similarity
metric.

By comparing the evaluation results of our approach
using weight selection-based cosine similarity and classic
cosine similarity, we get a conclusion that using the pro-
posed weigh selection-based cosine similarity function can
help to recommend more accurate classes in top-5 ranking
results than using classic cosine similarity measure.

According to overall evaluation and analysis results for
each step of our approach, we answer RQ1 as follows:

Answer to RQ1: Our approach selects HDP, Word2Vec,
and the weight selection-based cosine similarity measure
as user feedback clustering, feedback cluster enrichment,
and class ranking algorithms, respectively due to their
preferable performance on change request localization.

5.3 Answer to RQ2: Performance Comparison

In order to fairly compare the performance of change request
localization using CHANGEADVISOR and our approach, we
adopt the user feedback selected by the classification approach
introduced in Section 3.2 to re-implement CHANGEADVISOR.
In the literature [33], Palomba et al. set the threshold value to
0.5 for all projects. To demonstrate whether our approach per-
forms better than CHANGEADVISOR, we adjust the threshold
value from 0.1 to 1 to obtain all evaluation results of CHANGE-
ADVISOR. The following table (i.e., Table 12) show the best
evaluation results of CHANGEADVISOR. In addition, for our
approach Where2Change, not all clusters can link to issue
reports used to enrich them. We also consider the feedback
clusters which cannot link to issue reports to compare the per-
formance of change request localization between CHANGEAD-

VISOR and our approach. Note that the weight-selection
cosine similarity measure is not suitable for computing the
similarity between these clusters and classes to be changed.
Because this algorithm depends on the linked issue reports to
get the best weights of terms. Therefore, we still use the simi-
larity metric-Word2Vec to compute the similarity scores
between these feedback clusters not linked to issue reports
and source code classes. Table 12 shows the Top-N values,

TABLE 10
Precision (P), MRR (MR), and MAP (MA) Values (%) Comparison using Different

Similarity Metrics for the Feedback Clusters Unmatched to Issue Reports

Project
Where2ChangeDice Where2Changetf �idf Where2ChangeWord2Vec Where2ChangeMCG

P MR MA P MR MA P MR MA P MR MA

AntennaPod 80.00 37.83 91.67 33.33 5.27 23.61 0.00 0.00 0.00 80.00 22.83 20.10
Automattic 100.00 20.00 80.00 0.00 0.00 0.00 0.00 0.00 0.00 80.00 20.83 33.96
Cgeo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Chrislacy 90.00 22.83 66.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K-9 Mail 100.00 11.42 25.00 20.00 2.23 11.11 10.00 5.01 5.00 20.00 3.34 10.00
OneBusAway 100.00 10.00 50.00 44.44 29.46 88.44 0.00 0.00 0.00 20.00 13.56 8.33
Twidere 25.00 5.56 19.44 25.00 10.00 50.00 15.00 4.99 5.00 0.00 0.00 0.00
UweTrottmann 65.00 20.79 67.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
WhisperSystems 0.00 0.00 0.00 40.00 5.33 18.33 0.00 0.00 0.00 0.00 0.00 0.00
Wordpress 100.00 22.83 50.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Arithmetic mean 76.94 19.43 59.40 25.51 9.01 31.41 6.25 2.50 2.50 44.62 13.87 14.87

TABLE 11
Performance of our Approach using Cosine Similarity Measure

Project
Where2Changecosine

T1 T3 T5 P R MR MA

AntennaPod 30 32 34 22.86 36.37 4.29 19.60
Automattic 12 12 12 30.65 70.38 18.38 52.14
Cgeo 20 20 20 53.17 39.28 18.22 56.58
Chrislacy 7 7 7 48.65 68.36 13.52 45.13
K-9 Mail 2 5 6 10.26 16.91 2.50 10.25
OneBusAway 30 33 33 47.27 47.98 11.06 37.99
Twidere 21 26 27 13.20 10.04 5.95 27.21
UweTrottmann 21 26 28 21.14 41.00 4.37 18.48
WhisperSystems 13 16 15 25.18 37.84 7.63 27.12
Wordpress 12 12 12 38.71 26.26 17.01 60.65
Arithmetic mean 21.0 23.7 24.4 34.02 30.24 37.40 9.12

ZHANG ETAL.: WHERE2CHANGE: CHANGE REQUEST LOCALIZATION FOR APP REVIEWS 2605

Precision & Recall values, and MRR & MAP values of
Where2Change and CHANGEADVISOR for all clusters in our
data set.

Expect for the arithmetic mean values of MAP, we note
that Where2Change performs better than CHANGEADVI-

SOR. Especially for Top-N and Recall values, we find that the
differences reach up to 17 for Top-1, 18.1 for Top-3, 17.9 for
Top-5, and 50.08 percent for Recall. For the arithmetic mean
MAP values, Where2Change is not better than but very
close to CHANGEADVISOR. The difference is only 3.39 percent
(75.89%-72.50%=3.39%).

In order to verify whether our approach can successfully
locate more source code classes that should be changed for
more user feedback clusters, we use Wilcoxon test [34] in
the R environment [35] to further compare the performance
between CHANGEADVISOR and our approach. If a p-value is
more than the significance level, we accept the null hypothe-
sis; otherwise, we reject it. We adopt the default value (i.e.,
0.05) as the significance level. We define the null hypothesis
as follows:

� Our approach shows nonoteworthy difference against
the previous study CHANGEADVISOR.

Next, we introduce the Top-N, Recall, Precision, MRR,
MAP values of 10 projects as the input data and perform
Wilcoxon test. As a result, we get the corresponding p-val-
ues. We list them at Table 13.

We note that the p-values of Top-N and Recall are less
than 0.05. In this situation, we reject the null hypothesis.
Therefore, our approach can significantly improve the perfor-
mance of change request localization for user feedback by
comparing with the previous work CHANGEADVISOR. In
other words, our approach can successfully locate more

source code classes to be changed for more user feedback
clusters than CHANGEADVISOR. In addition, the p-values of
Precision, MRR, and MAP are more than 0.05. Thus, we
accept the null hypothesis. This result indicates that the accu-
racy in top-5 ranking results of our approach has no signifi-
cantly difference with CHANGEADVISOR.

According to the above experimental result, we get a con-
clusion that our approach can successfully locate more
source code classes that should be changed for more user
feedback clusters than the previous study CHANGEADVISOR

and keep the similar accuracy in top-5 ranking results. The
major reason is that issue reports can enrich user feedback
clusters due to their detailed descriptions for the software
faults and feature requests so that the performance of
change request localization is improved. In addition, we
propose the weight selection cosine similarity measure
which adopts the best weights of terms to compute the simi-
larity between user feedback clusters and source code,
which results in that more source code classes related to
change requests are successfully located for more user feed-
back clusters.

The previous IR-based fault localization technologies uti-
lize issue reports as queries to search where should the
bugs be fixed. In this section, we utilize BLUiR [5] and
BLIA [6] to resolve the problem in our work. In the litera-
ture [8], Palomba et al. compared the performance of
CHANGEADVISOR and BLUiR. Therefore, we also select is as
one of our baselines. Moreover, we also select BLIA as
another baseline due to the two reasons. On the one hand,
Youm et al. indicate that BLIA outperforms the existing
tools such as BLUiR and BugLocator [4] because this
approach considers the multiple data resources that include
texts and stack traces in issue reports, structured informa-
tion of source files, and source code change histories; On
the other hand, BLIA is an open source tool, which is easily
employed to implement our task.

To fairly compare the performance of our approach and the
baselines, it is necessary to guarantee that the same queries
(i.e., user feedback clusters) are used to conduct change request
localization. In ourwork,we utilize theweight-selection cosine
similarity measure to compute the textual similarity scores
between the enriched feedback clusters and source code
classes. Therefore, we also use baselines to re-implement this
task. Tables 14 and 15 show the evaluation results of BLIA
and BLUiR.

TABLE 12
Performance Comparison between Where2Change and CHANGEADVISOR

Project
Where2Change CHANGEADVISOR

T1 T3 T5 P R MR MA T1 T3 T5 P R MR MA

AntennaPod 29 35 35 50.99 69.99 21.45 57.50 7 8 9 56.52 11.82 30.37 87.14
Automattic 12 12 12 42.22 70.38 31.72 76.03 3 4 4 50.00 14.81 25.17 85.73
Cgeo 20 20 20 85.00 35.96 39.62 90.05 4 4 4 84.62 1.66 33.08 99.99
Chrislacy 7 7 7 75.00 83.55 31.68 76.46 1 5 6 46.67 8.86 19.00 60.00
K-9 Mail 5 8 8 31.19 47.89 10.31 33.02 5 9 9 28.57 11.27 19.30 64.28
OneBusAway 33 33 33 67.86 67.17 42.40 95.01 6 7 7 56.51 6.57 24.85 70.05
Twidere 27 31 31 35.59 30.50 29.71 73.47 5 8 8 36.00 3.47 20.14 69.18
UweTrottmann 21 28 28 46.36 70.00 16.92 48.37 8 11 11 54.55 12.00 26.63 78.89
WhisperSystems 15 16 16 62.36 60.00 32.17 78.73 4 4 4 21.05 2.16 11.30 44.44
Wordpress 12 12 12 76.33 40.92 41.83 94.13 5 7 7 85.71 3.93 31.88 78.28
Arithmetic mean 22.5 25.3 25.3 56.17 57.69 29.80 72.50 5.5 7.2 7.4 53.07 7.61 25.12 75.89

TABLE 13
The Result of Wilcoxon Test

Evaluation approach p-value Result

Top-1 0.00088 Reject
Top-3 0.00361 Reject
Top-5 0.00407 Reject
Recall 0.00016 Reject
Precision 0.65015 Accept
MRR 0.19876 Accept
MAP 1.00000 Accept

2606 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

When we compare the result of our approach shown in
Table 12 with that of BLIA and BLUiR, we find that our
approach performs better than these baselines. This fact indi-
cates that our approach using weigh-selection approach can
locate more correct source code classes related to change
requests for more user feedback clusters with the higher accu-
racy in top-5 results. The major reason is that selecting the
best terms’ weight is the most important factor than other
data resources such as change history and structure of source
codewhenwe conduct the task of change request localization.

According to above results of evaluation and analysis,
we can answer the research question RQ2 as follows:

Answer to RQ2: Our approach can recommend more
source code classes related to change requests for more
user feedback clusters than the previous change request
localization approach-CHANGEADVISOR. In addition,
by re-implementing the previous fault localization
approaches-BLIA and BLUiR on user feedback clusters,
our approach also performs better than them.

6 DISCUSSION

6.1 Answer to RQ3: Performance Analysis

In Section 5.3, we demonstrate that our approach can locate
more source code classes that should be changed for more
user feedback clusters than the previous study CHANGEAD-

VISOR. We analyze the reason in this section.
In this work, we utilize issue reports to enrich user feed-

back clusters for improving the performance of change
request localization. This is the difference with CHANGEAD-

VISOR. In order to demonstrate the importance of issue
reports in our approach, we compare the performance of
change request localization using our approach that utilizes
issue reports and that removes issue reports. We name
the latter as “Where2Change�IR”. For Where2Change�IR,
we only compute the similarity between a cluster of user
feedback and source code by using the similarity metrics
that include tf � idf , Word2Vec, and MCG. We do not use
Dice because CHANGEADVISOR adopts it to conduct the
same task and the result is shown in Table 12. The weight-
selection cosine similarity measure cannot be used to con-
duct this task because there are no issue reports that are used
to training for finding the terms’ best weights. Tables 16 and
17 show the result.

When we remove issue reports, using Word2Vec can pro-
duce the highest Top-N values while using MCG can get
the highest Precision, Recall, MRR, and MAP values. We
note that our approach using issue reports (See Table 12)
performs better than that removing issue reports due to the
higher Top-N, Precision, Recall, MRR, and MAP values.
Specially for Top-1 and Recall values, using issue reports
improve 2.3 times (22.5/9.7=2.3) for Top-1 while it improves
2.6 times (57.69/22.51=2.6) for Recall values than our
approach removing issue reports. In addition, when we
compare the performance of our approach removing issue

TABLE 14
Evaluation Result of BLIA

Project
BLIA

T1 T3 T5 P R MR MA

AntennaPod 21 31 32 43.21 55.80 18.76 52.11
Automattic 10 11 11 33.94 66.78 26.06 72.30
Cgeo 15 15 15 86.15 30.67 30.15 82.58
Chrislacy 6 8 8 70.19 80.22 28.79 70.13
K-9 Mail 2 4 4 27.56 40.21 16.78 31.08
OneBusAway 24 28 28 58.19 62.66 35.57 89.04
Twidere 22 22 25 33.10 25.89 25.84 61.13
UweTrottmann 20 22 22 44.34 61.26 11.13 42.15
WhisperSystems 13 13 14 59.88 55.36 30.15 77.21
Wordpress 10 11 11 83.15 33.14 37.21 89.76
Arithmetic mean 17.7 20.7 21.3 52.06 50.56 25.26 66.23

TABLE 15
Evaluation Result of BLUiR

Project
BLUiR

T1 T3 T5 P R MR MA

AntennaPod 21 30 31 40.21 51.36 13.16 46.68
Automattic 8 9 9 30.11 62.48 19.89 70.18
Cgeo 12 13 13 78.95 26.07 30.32 77.26
Chrislacy 4 5 7 63.20 72.19 23.57 63.19
K-9 Mail 3 4 4 22.30 31.26 14.67 28.77
OneBusAway 25 26 26 47.05 55.69 30.20 80.09
Twidere 20 23 24 30.15 19.14 22.15 62.46
UweTrottmann 17 18 20 40.18 58.88 10.32 33.68
WhisperSystems 11 11 11 52.35 49.13 22.46 68.48
Wordpress 9 10 11 79.31 27.51 30.22 82.57
Arithmetic mean 16.5 19.1 19.8 46.46 45.14 21.11 60.67

TABLE 16
Top-N (T1, T3, T5) Values of our Approach when Removing Issue Reports

Project
Where2Changetf�idf�IR Where2ChangeWord2Vec

�IR Where2ChangeMCG
�IR

T1 T3 T5 T1 T3 T5 T1 T3 T5

AntennaPod 12 17 18 16 32 36 10 24 32
Automattic 0 4 4 3 9 12 5 11 11
Cgeo 10 11 12 13 18 19 10 19 19
Chrislacy 0 2 2 6 8 8 4 5 7
K-9 Mail 1 2 2 2 3 4 3 3 7
OneBusAway 29 32 32 18 33 33 21 31 32
Twidere 3 7 10 5 14 20 6 13 20
UweTrottmann 3 4 7 6 23 28 10 20 25
WhisperSystems 0 6 8 4 12 12 3 11 12
WordPress 7 11 11 5 8 8 4 9 11
Arithmetic mean 9.2 12.4 13.7 9.7 20.5 23.1 9.5 18.3 22.0

ZHANG ETAL.: WHERE2CHANGE: CHANGE REQUEST LOCALIZATION FOR APP REVIEWS 2607

reports and CHANGEADVISOR, we find that Precision, MRR,
and MAP values of the latter one is higher than that of the
former one. Therefore, removing issue reports cut down the
performance of change request localization for user feed-
back. This result indicates that issue reports can help our
approach successfully locate more classes to be changed for
more user feedback clusters.

Cases: In Table 9, we show the ratio of feedback clusters
unmatched to issue reports when using different metrics.
Note that for K-9 Mail, the ratio is higher than others. Except
for Recall, we find that Top-N, MAP, and MRR values of
CHANGEADVISOR are also higher than that of our approach.
Specially for MAP value which is twice as much as that of
our approach. For Precision, there is no significant differ-
ence between two approaches. Otherwise, for Cgeo, the
unmatched ratio is 0 percent. We find that Top-N, Precision,
Recall, and MRR values of our approach are also higher
than that of CHANGEADVISOR, specially for Top-N and
Recall values. For MAP value, the difference between two
approaches is less than 10 percent.

The above-mentioned two cases demonstrated that our
approach performs much better than CHANGEADVISOR

when a lot of user feedback clusters can link to historical
issue reports. Otherwise, if there are no enough historical
issue reports which can enrich user feedback clusters, our
approach cannot locate more accurate source code clas-
ses for more user feedback clusters by comparing with
CHANGEADVISOR.

We explain why issue reports can help to improve the per-
formance of change request localization. There are two rea-
sons: 1) According to our previous investigation for issue
reports in mobile apps [1], we find that issue reports contain
the detailed information such as stack traces, code examples,
and patches. The important information describes the clues
why a bug appears or a feature request is proposed. By enrich-
ing user feedback clusters, they can assist our approach to
locate more correct classes to be changed for more user feed-
back; 2) Issue reports can help us get the best terms’ weights
used to compute the similarity scores between user feedback
clusters and source code classes so that our approach can suc-
cessfully locate more source code classes related to change
requests formore user feedback clusters.

According to above-mentioned experimental results and
analysis, we can answer RQ3 as follows:

Answer to RQ3: Issue reports can help our approach
locate more source code classes related to change
requests for more user feedback due to their detailed
information and the contribution on finding the best
terms’ weights used to improve the performance of the
cosine similarity measure.

6.2 Answer to RQ4: Query Verification

In this work, we adopt user feedback extracted from user
reviews rather than issue reports as queries to conduct
change request localization for mobile apps. In Section 6.1,
we demonstrate that our approach using issue reports can
locate more source code classes to be changed for more user
feedback clusters. Thus, the question “why do not adopt issue
reports as queries to conduct change request localization if they
can provide detailed information?” is thrown out. We investi-
gate the reasons in this subsection.

Different from issue reports, user reviews are posted by
users who may have no or less experience on software
development and debugging. However, user reviews reflect
users’ requirements for the next update of mobile apps.
Especially for the user reviews related to bugs and feature
requests, the users expect that developers can fix these
bugs and add the appropriate features in the next version.
Comparing with traditional desktop software, the update
rate of mobile apps is more frequent. Users can choose high-
quality apps which have good user experience in the short
term. Therefore, satisfying users’ requirements is a lifeline of
mobile apps [36].

In the literature [7], Mcilroy et al. point out that mobile
apps’ developers usually depend on user reviews to resolve
the issues and update the apps. This finding brings inspira-
tion to us so that we want to understand developers’ real
behavior for resolving issues in mobile apps. Thus we send
a brief questionnaire to top 200 most active developers who
have the maximum number of times to resolve issues and to
give the comments11 in top 100 popular mobile apps via
public mail addresses. They are invited to answer the ques-
tion Q1 shown in Table 18.

TABLE 17
Precision (P), Recall (R), MRR (MR), and MAP (MA) Values (%) of our Approach when Removing Issue Reports

Project
Where2Changetf �idf�IR Where2ChangeWord2Vec

�IR Where2ChangeMCG
�IR

P R MR MA P R MR MA P R MR MA

AntennaPod 31.71 11.82 2.93 13.00 43.01 36.36 16.48 49.15 40.45 32.73 21.40 62.70
Automattic 35.29 22.22 4.63 18.15 37.04 36.03 23.19 62.09 37.04 37.03 19.47 55.31
Cgeo 60.98 3.78 17.10 51.44 58.44 6.80 26.68 70.72 63.75 7.70 30.45 75.81
Chrislacy 50.00 7.59 4.54 13.07 48.15 16.46 18.75 52.43 73.33 27.85 34.25 84.58
K-9 Mail 11.11 2.82 3.33 16.67 23.53 11.27 12.46 46.32 16.22 8.45 8.21 31.32
OneBusAway 42.86 4.55 30.60 82.97 59.42 20.71 29.39 75.84 66.67 32.32 28.11 70.51
Twidere 18.00 3.47 4.49 18.56 22.52 9.65 8.31 33.31 17.58 6.18 9.19 32.15
UweTrottmann 20.59 7.00 2.93 13.00 40.51 32.00 15.42 48.39 36.08 35.00 15.96 48.48
WhisperSystems 16.13 2.70 4.25 19.17 27.27 9.73 12.17 40.35 28.17 10.81 13.40 43.19
WordPress 50.00 1.97 21.31 75.28 51.92 5.91 21.31 57.58 42.86 5.25 18.06 48.03
Arithmetic mean 32.75 6.73 10.45 33.64 42.26 20.77 18.53 53.81 42.40 22.51 19.87 55.58

11. Some active developers may act both of issue assignees and
commentators

2608 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

As a result, we receive 98 responses (49 percent response
rate). Among them, 71 (72.4 percent) developers select
Answer A while 13 (13.3 percent) developers choose Answer
B. For Answer C, 14 (14.3 percent) developers choose it.
By analyzing the investigation result, we have two find-
ings. On the one hand, we note that most of developers
(71+13=84) worked for mobile apps depend on user reviews
for finding and resolving issues. This finding is same as the
report at the literature [7]. On the other hand, we note that
72.4 percent developers still depend on historical issue
reports to help them locate source code classes related to
change requests. We send the emails for these developers to
ask the reasons. One developer worked at WordPress team
told us: “I can find some relevant source code files by utilizing
some historical issue reports which describe the similar faults with
new user reviews.” Therefore, we think that selecting user
reviews as queries can help to develop a full-automatic
change request localization technology for saving the devel-
opers’ time of reading and understanding thousands of
user reviews in mobile apps. Moreover, historical issue
reports can facilitate change request localization as the aux-
iliary role. We also have interests on the produce of histori-
cal issue reports. Thus, in the questionnaire, we require that
the developers who select A or B to answer the question Q2
shown in Table 18.

We note that 52 developers (61.9%=52/84) select answer
A while 30 developers (35.7%=30/84) select answer B. Only
2 developers select answer C and no one select answer D. In
summary, these developers can also write the issue reports
in order to help other developers use or refer to them for fix-
ing the coming issues. Therefore, historical issue reports can
continually produce, which can be used to improve the per-
formance of our approach.

We also investigate the generation frequency (i.e., how
much time a new one is generated) of issue reports and user
reviews. Table 19 shows a comparison result of the generation

frequency between issue reports and user reviews. We note
that the generation frequency of user reviews is much faster
than that of issue reports. The average generation frequency
of user reviews is less than 1 daywhereas that of issue reports
reaches up to about 4 days. Thus, in the real debugging
process for mobile apps, user reviews, which have high
generation frequency, can facilitate developers to localize
the change requests quickly in order to improve apps’ perfor-
mance timely.

In Table 19, we note that the generation frequency of user
reviews is much higher than that of issue reports. Therefore,
a new coming user review may describe a new bug or a new
feature request which is not described in historical issue
reports even though the similar issue is reported. We should
verify whether historical issue reports can help to locate
classes to be changed for new user reviews. We perform a
real experiment introduced at Section 5.1 in order to achieve
the goal. Before we start the experiment, the issue reports
and user reviews are divided into two groups as the time
frame. In detail, we collect the issue reports submitted
before the corresponding timeline into G1 and gather the
user reviews posted after this timeline into G2. Each project
has its own timeline. We decide each timeline as the follow-
ing rules:

1) We choose the submission time of the last submitted
issue report in each project as the reference point for
deciding the corresponding timeline. In other words,
we want to utilize as more historical issue reports as
possible to locate changes for newly posted user
reviews.

2) Wekeep a certain number (minimum is 2) of user feed-
back clusters to implement our approach. The major
reasons is that few number of feedback clusters can
lead to ameaningless results.

Table 20 shows the data scale of issue reports and user
reviews in G1 and G2. Actually, verifying the timeline for
each project as the above-mentioned rules is a trade-off prob-
lem. Utilizing more number of historical issue reports can
reduce the number of user reviews used in our experiment so
that the number of user feedback clusters is decreased aswell.
For example, in Automattic, when we put off the timeline
from 01/2015 to 02/2015 to includemore number of historical

TABLE 18
Questions and Answers in the Questionnaire

Q1: Which one is the real issue (i.e., software faults and
feature requests) resolution process among the following
three options in mobile apps that you worked?

A. I find the issues from user reviews, but I need to depend on
historical issue reports to locate source code classes related to
change requests so that I can resolve them.

B. I find the issues from user reviews, then I can directly locate
source code classes related to change requests and resolve
them without historical issue reports.

C. I do not refer to user reviews. I already wrote the issue
reproducing test cases in issue reports and other developers
are responsible for fixing the issues.

Q2: What is the process when you create an issue report?

A. I fix the bug and just create an issue report to record the
maintenance task.
B. I already wrote the fault reproducing test cases, locate the
source code classes related to change requests, and wrote the
issue report.

C. I wrote the issue report just based on the user reviews and
my own knowledge about the system.
D. I just fix the bug and cannot write the issue report.

TABLE 19
Comparison of Generation Frequency between

user Reviews and Issue Reports

Project
Generation frequency (days)

User Review Issue Report

AntennaPod 2.8 0.79
Automattic 7.41 0.88
Cgeo 0.88 0.43
Chrislacy 2.41 1.23
K-9 Mail 3.47 0.26
OneBusAway 5.31 1.25
Twidere 3.86 0.86
UweTrottmann 9.72 0.47
WhisperSystems 2.98 0.02
WordPress 0.81 0.16
Average 3.97 0.64

ZHANG ETAL.: WHERE2CHANGE: CHANGE REQUEST LOCALIZATION FOR APP REVIEWS 2609

issue reports as option 1), we can only get one feedback cluster
so that the evaluation result is meaningless. For this case, we
violate option 2). On the contrary, if we bring forward the
timeline from 01/2015 to 12/2014, the number of clusters still
is 4. But we waste quite a few number historical issue reports
so that we violate option 1). Therefore, we select 01/2015 as
the timeline for Automattic. By the same token, we do not vio-
late option 1) and option 2) when deciding the timeline for
other projects. There are three special cases that include K-9
Mail, UweTrottmann, and WordPress. In these apps, when
we put off the timelines shown in Table 20 by one month or
more than one months, the number of clusters is decreased
to below 50 percent but it is great than or equal to 2 while
less than 10 percent number of historical issue reports are
added. Therefore, even though these apps do not violate
option 1) and option 2), we also do not put off the timelines
because we should consider the cost performance. In other
words, we must prevent the case that using more than or
equal to 50 percent number of feedback clusters to trade less
than 10 percent number of historical issue reports. According
to the options and the reason to explain the three special cases,
we verify the corresponding timeline for each project shown
in Table 20.

When the experiment starts, we first extract the user feed-
back entries and cluster them in G2 to generate the feedback
clusters, then use the issue reports in G1 to enrich the feed-
back clusters. Next, we re-implement our approach descri-
bed in Section 3. For each project, we call our approach in

this experiment as Where2ChangeT which utilizes the issue
reports generated before the corresponding timeline to enrich
the clusters of user feedback produced after this timeline for
locating the changes appearing in the source code. T stands
for the time frame. We also utilize CHANGEADVISOR to con-
duct change localization for the new coming user reviews in
G2. The comparison results are shown in Table 21.

Overall, for new coming user reviews, our approach still
can recommend more correct classes to be changed due to
much higher recall values, the difference between Where2
ChangeT andCHANGEADVISORT reaches to 28.48 percent.
From Precision, MRR, and MAP values, we find that there is
no significant difference between two approaches. This find-
ing is same as the comparison result shown in Section 5.3.
For Top-N values, the differences are less than 1 between
two approaches. The major reason is that few number of
clusters can affect the performance of our approach. The
result also demonstrated that our approach should be
employed to more than 1,400 user reviews which can gener-
ate more than 60 feedback clusters. We also explain it in
Section 5.1.

Based on the evaluation result for new coming user
reviews, historical issue reports can help to locate more cor-
rect classes. However, in the task of change localization for
mobile apps, issue reports are treated as the secondary role
which cannot replace user reviews as queries. Expect for the
above-mentioned reasons, there is also a reason: enriched
issue reports describe the similar but not same software faults
or feature requests with user reviews. Thus they can only be
used to enrich the corresponding user feedback clusters but
cannot replace them.We list someexamples shown inTable 22
to explain this fact.

The three examples are real cases inWordPress. For Exam-
ple 1, both the user review and the issue report describe the
problem of uploading. However, the former concerns the
image while the latter focuses on the posts; For Example 2,
both the user review and the issue report also describe the
problem of uploading. However, the former concerns that the
user cannot upload the data while the latter indicates that
users may not see the uploaded data; For Example 3, both the
user review and the issue report describe the problemof login.
However, the former concerns that the user cannot log in the
appwhile the latter presents that some parts of the app cannot
work after login.

TABLE 20
Data Scale of Issue Reports and user
Reviews in the Specific Time Frame

Project
reports # reviews # clusters Timeline

in G1 in G2 in G2

AntennaPod 102 117 4 01/2016
Automattic 78 113 4 01/2015
Cgeo 460 367 2 01/2013
Chrislacy 45 79 2 07/2013
K-9 Mail 33 882 6 06/2016
OneBusAway 46 160 4 06/2015
Twidere 65 86 4 03/2016
UweTrottmann 87 324 6 01/2015
WhisperSystems 147 340 4 01/2016
WordPress 556 1,159 10 06/2015

TABLE 21
Performance Comparison between Where2Change and CHANGEADVISOR for New Coming User Reviews

Project
Where2ChangeT CHANGEADVISORT

T1 T3 T5 P R MR MA T1 T3 T5 P R MR MA

AntennaPod 4 4 4 65.63 38.19 27.18 68.99 4 4 4 66.67 7.27 33.08 93.02
Automattic 3 4 4 70.00 51.86 37.19 86.57 2 2 2 96.99 22.22 18.92 50.00
Cgeo 2 2 2 80.01 4.23 43.07 95.81 1 1 1 99.01 0.76 22.83 49.98
Chrislacy 2 2 2 77.09 46.84 37.09 85.64 2 2 2 88.89 10.13 40.67 90.21
K-9 Mail 1 5 5 31.95 32.40 5.03 19.84 3 4 4 64.71 15.49 32.00 87.01
OneBusAway 3 3 3 85.25 52.53 43.01 96.01 2 2 2 87.50 3.54 25.33 70.10
Twidere 4 4 4 67.02 25.10 40.86 93.26 3 3 3 57.14 1.54 22.92 72.92
UweTrottmann 2 5 5 63.16 36.00 13.49 40.94 4 5 5 56.25 9.00 28.50 70.07
WhisperSystems 1 4 4 90.01 34.06 25.73 67.88 1 1 1 60.00 1.62 7.67 18.89
WordPress 10 10 10 80.30 35.67 44.36 98.02 10 10 10 96.00 5.25 41.01 96.78
Arithmetic mean 4.0 5.3 5.3 69.55 36.44 30.67 73.01 4.3 4.5 4.5 76.84 7.96 28.95 74.14

2610 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

For each example, we note that the problem described in
the user review and the corresponding issue report is simi-
lar. They are also related to the same source code class(es).
We take an example, for issue report-# 862, we find that the
class WordPress was changed for fixing the software fault
reported in -# 862 by checking the commit. By investigating
the ground truth, we find that there is a link between the
feedback cluster that includes the user review-A and Word-

Press. Therefore, the historical issue reports indeed help to
enrich the user reviews so that more correct classes are rec-
ommended to more user feedback clusters. However, issue
reports cannot replace user reviews as queries because they
may describe the different problems with reviews even
though these problems are similar.

According to above results of evaluation and analysis,
we can answer the research question RQ6 as follows:

Answer to RQ4: We select user reviews as queries rather
than issue reports to conduct change localization due to
the three reasons: 1) They can help to develop full-auto-
matic change request localization technology; 2) They
can help to successfully locate source code classes related
to new change requests proposed by users, which are not
found by developers; 3) The problems described in user
reviews and issue reports may be similar but not same.

7 THREATS TO VALIDITY

In this section, we discuss some threats of our work from
two aspects: external validity and validity.

7.1 External Validity

We have only collected the data from ten mobile apps man-
aged by GitHub to perform our experiments. These apps are
selected according to stars’ ranking inGitHub. In otherwords,
we only consider the popular projects which have more stars
provided by users. Thus our approach may not be generaliz-
able to other projects. Even though we think that these popu-
lar projects are representative, we would like to further
explore more projects in our future work. In addition, we just
choose themobile apps inGitHub as our experimental objects.
Other mobile apps management systems such as Bitbucket
also have the project hosting services to manage issues of
mobile apps. Therefore we are not sure whether the proposed
change localization approach can still keep the effectiveness
for these apps. However, we think that this threat is reduced

because Bitbucket mainly supports private (or business) proj-
ectswhich are different fromopen source projects.

7.2 Internal Validity

7.2.1 Topic Modelling

In this study, we utilize topic model to cluster user feed-
back. Topic modelling depends on data distributions in the
data sets, therefore different data sets may affect the perfor-
mance of topic modelling. However, the negative impact is
small for our work. In Table 2, we find that the number of
user feedback is more than 1,000 for all projects (3 projects
have more than 4,000 user feedback). Therefore, plenty of
user reviews reduce this threat.

7.2.2 User Feedback

In this work, we adopt a cluster of user feedback as a query to
search the corresponding classes that should be changed. Ide-
ally, a user feedback entry should be treated as a query. How-
ever, we find that the accuracy is not acceptable (i.e., very low
accuracy). Themajor reason is that the information containing
in single feedback is not enough. Moreover, some feedback
entries describe a same or similar issue. Thus, considering
clusters of user feedback as queries also can get the correct
classes to be changed for developers so that they can reduce
their workload.

7.2.3 Ground Truth

We invite four developers who have more than 10 years soft-
ware programming and testing experience to build the ground
truth that includes the links between user feedback clusters
and source code classes. Obviously, this is a difficult and chal-
lenge task. In order to ensure the credibility of the ground
truth, we also invite the senior software test specialist who has
more than 15 years software testing experience from Alibaba
Company to verify whether these source code classes are
linked to the given user feedback clusters accurately. Thus we
believe that the threat for the credibility of the ground truth is
reduced.Moreover, in order to further assess the quality of the
ground truth, we invite the top-10 active developers to verify
what the hitting rate and the missing rate are. One developer
from Automattic helps to check the links in the app. We find
that the hitting rate is 97.06 percent while the missing rate is
5.71 percent. However, we are not sure what the hitting rate
and the missing rate are in other apps. It may be a threat, but

TABLE 22
Examples to Show the Similar but not Same Contents of user Reviews and Issue Reports

No. User review Issue report Relevant class(es)

1 A: I’ve been trying for too long to
upload an image but it just won’t!

862: I’ve had support threads with two users so
far that can’t upload posts in 2.6...

WordPress

2 B: It shown that could not update
data at this time.

3607: If you update your site’s title and then
return to the main menu, you’ll still see the old title
at the top of the page until you either tap Switch
Site and re-select...

MySiteFragment

SiteSettingsFragment

BlogUtils

3 C: I love the site but hate this app
because I can’t log in to the app...

4798: ...When I log in with my email and a magic
link, some parts of the app do not work...

ThemeWebActivity

StatsViewHolder

ReaderActivityLauncher

ZHANG ETAL.: WHERE2CHANGE: CHANGE REQUEST LOCALIZATION FOR APP REVIEWS 2611

we believe that the threat is not large since Automattic has
characteristics similar tomany othermobile apps [1].

We open our ground truth for all developers and
researchers so that they can help to perfect it. In addition,
we also expect that more developers and researchers can
join us to build more links between user feedback clusters
and source code classes for a greater number of apps.

8 RELATED WORK

In this section, we introduce some previous studies related
to our work. These studies concern spectrum-based fault
localization, IR-based fault localization, spectrum and IR-
based fault localization, reviews-based fault localization,
and software maintenance for mobile apps.

8.1 Fault Localization Techniques

Fault localization is an important foregoing task of bug fix-
ing. Wong et al. [37] provide a systematic survey of such
fault localization techniques and discuss some key issues
and future directions. In this survey, they created a publica-
tion repository that includes 331 papers and 54 Ph.D. and
Masters theses on software fault localization techniques,
and analyzed the different evaluation metrics for these tech-
niques. Moreover, they found that the factors such as over-
head for computing the suspiciousness of each program
component, time and space for data collection, human
effort, and tool support should also be included in the con-
tributions of automated fault localization techniques.

8.1.1 Spectrum-Based Fault Localization

Spectrum-based fault localization techniques can help devel-
opers locate the software faults by testing a small portion of
code. These methods analyze a program spectra that includes
a series of program elements, and rank these elements so that
they can achieve the purpose of fault localization. Tarantula
[38] andOchiai [39] are two early-stage automatic localization
techniques, which utilized the different suspiciousness for-
mulas. Abreu et al. [39] demonstrated that Ochiai performed
better than Tarantula [38]. Xie et al. [40] analyzed the different
suspiciousness score formulas and proposed a new method
which did not require the existence of testing oracles to
enhance the performance of spectrum-based fault localiza-
tion. Lucia et al. [41] incorporate data fusion methods to
design Fusion Localizer to normalize the suspiciousness
scores of different fault localization techniques, selects fault
localization techniques to be fused, and combines the selec-
ted techniques using a data fusion method. This approach
requires no training data but improves the effectiveness
of fault localization. Laghari et al. [42] propose a variant of
spectrum-based fault localization, i.e., patterned spectrum
analysis. In detail, they utilize patterns of method calls by
means of frequent itemset mining. The experimental results
show that the proposed method is effective in localising the
faults. Perez et al. [43] proposed a metric named DDU to
increase the value generated by creating thorough test-suites
so that the proposedmethod can help widely-used spectrum-
based fault localization techniques to accurately pinpoint the
location of software faults.

In a word, the spectrum-based fault localization appro-
aches require program execution traces so that these

methods increase the computational cost and require more
data resources.

8.1.2 IR-based Fault Localization

In recent years, IR-based fault localization techniques attract
more attention due to their low cost and easy-to-access data
resources (e.g., requiring only issue reports and source code
files).

Lukins et al. [12] proposed a LDA-based approach to locate
the buggy files for over 300 bugs in 25 versions of Eclipse and
Rhino. Nguyen et al. proposed BugScout [3], a topic model-
based automatic localization technique to help developers
reduce the workload by narrowing the search space of buggy
files. Rao and Kak [13] compared the performance of different
IR-models, including Unigram Model (UM), VSM, Latent
Semantic Analysis Model (LSA), LDA, and Cluster Based
Document Model (CBDM) when performing the task of bug
localization. Zhou et al. [4] proposed BugLocator to rank all
source code files based on the textual similarity between a
new issue report and the source code using a revised VSM.
They also consider to combine the similarity between the
given issue report and the similar bugs for improving the
accuracy of fault localization. Kim et al. [14] proposed a two-
phase recommendation model. In this model, they adopted
Naive Bayes to filter out the uninformative issue reports and
predict the buggy file for each submitted issue report. Thung
et al. [15] develop an online tool to support fault localization
for helping developers findwhere the bug is from the project’s
source code repository. Kochhar et al. [16] analyze the poten-
tial biases in fault localization. Authors mainly focus on what
content (e.g., bug, feature request, or code update) an issue
report describes. Lam et al. [17] proposed an information
retrieval approach which combines deep learning to locate
the buggy files for issue reports.

Except for issue reports and source code, some studies also
consider the more data sources and the structure of source
code. Saha et al. develop BLUiR [5] which build AST to extract
the program constructs of each source code file, and utilize
Okapi BM25 to calculate the similarity between the given
issue report and the constructs of each candidate buggy file.
Ye et al. [18] leverages project knowledge through functional
decomposition of source code, API description of library
components, the bug-fixing history, the code change history,
and the file dependency graph to generate a ranking list
of source files scored by a weighted combination of an
array of features. Wang et al. [19] utilize version history, simi-
lar reports, and code’s structure to locate the buggy files.
Chaparro et al. [20] adopted observed behavior to reformu-
late queries for improving the performance of information
retrieval-based fault localization. Youm et al. proposed BLIA
[6] which utilized texts and stack traces in issue reports, struc-
tured information of source files, and source code histories to
conduct fault localization.

Our approach also utilizes IR-based localization technique
to locate changes. However, there are some differences with
the previous studies. First, our approach adopts user feed-
back clusters as queries rather than issue reports to locate
source code classes that should be changed. Second, we focus
on mobile apps rather than desktop software. Finally, we
propose a weight-selection cosine similarity to compute the
similarity scores between queries and source code.

2612 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

8.1.3 Spectrum and IR-Based Fault Localization

Le et al. [21] build a multi-model technique that consider both
issue reports and program spectra to localize bugs. This work
addresses the limitation of existing studies by analyzing both
issue reports and execution traces. Because this method
adopts more data resources (i.e., issue reports and program
spectra) to execute fault localization, the results show that it
performs better than the IR-based localization technique [18]
and the spectrum-based localization technique [44].

Even if the hybrid model can improve the performance of
fault localization. However, program spectrum should take as
input a faulty program and two sets of test cases (i.e., failed test
cases and passed test cases). Thus, this approach needs more
computing cost. Our approach is a lightweight method. In the
one hand, the data resources can be easily collected from Goo-
gle Play Store and GitHub; in the other hand, the algorithm
contains fewer parameters but gets good performance.

8.2 Reviews-Based Change Localization

Palomba et al. [8] proposed a new approach that analyzes the
structure, semantics, and sentiments of sentences including in
user reviews to extract the useful information for localizing
code changes in mobile apps. The experimental results show
that thismethod presents higher accuracy than BLUiR [5].

To our best of knowledge, this is the only work that is simi-
lar to our study. Both two studies also consider user reviews
to locate the code changes inmobile apps. However, there are
some differences presented as follows:

� We adopt issue reports to enrich user feedback
extracted from user reviews in order to improve the
performance of change localization. The experimen-
tal results shown that our approach can successfully
locate more changes for more user feedback clusters
than CHANGEADVISOR [8] due to higher Top-N and
Recall values.

� We propose an accurate similarity metric (i.e.,
weight selection-based similarity function) to com-
pute the similarity between the queries and source
code. It performs better than classic cosine similarity
metric due to the use of the best terms’ weights.

8.3 Software Maintenance for Mobile Apps

Software maintenance for mobile apps become an important
task in industry since an increasing number of mobile apps
have been developed, however, only few works in academia
focus on this topic. Syer et al. [45] analyzed 15 most popular
open source Android apps, and they found that the “best
practices” of existing desktop software development cannot
apply to mobile apps due to the different features. Bhatta-
charya et al. [46] conducted an empirical analysis of bug
reports and bug fixing in open source Android apps. They
investigated the quality of bug reports and analyze the bug-
fixing process. In addition, they showed how differences in
bug life-cycles of Bugzilla applications and Android apps of
Google Code can affect the bug-fixing process. Zhou et al.
[47] conducted a cross-platform analysis of bugs and bug-
fixing process in open source projects of different platforms,
including desktop, Android, and IOS. They analyzed the

different attributes (e.g., fixing time and severity) of bug-
fixing process in these different platforms.

These studies on empirical analysis of bug reports and
bug-fixing process of mobile apps provide the inspiration
for starting our work. In [46], [47], the researchers mainly
studied the mobile apps in Google Code. However, since
Google Code is shutting down at 2016 [48], a growing num-
ber of mobile apps select GitHub as their management and
issue tracking tool. Therefore, we select the mobile apps of
Github as our study objects. Under the circumstances, the
analysis results (e.g., the length of description) in [46], [47]
cannot be appropriate for our data set. In [1], we only per-
formed an empirical analysis for the features of issue
reports in two different platforms. In our work, we mainly
focus on how to locate source code that should be changed
for clusters of user feedback in mobile apps.

8.4 Review Analysis

With a great number of mobile apps appear in online app
stores such as Google Play Store, Apple App Store, or Win-
dows Phone App Store, users can rate the apps using stars
rating and text reviews. These reviews describe users’ impres-
sions, comparisons, and attitudes towards the apps. Thus,
app store reviews can be used by developers as a feedback to
facilitate the development process. Some studies tend to ana-
lyze users’ reviews for extracting the useful information.

Chen et al. present AR-Miner [24], a novel computational
framework, to perform comrehensive analysis for user
reviews. They group the most of informative reviews by filter-
ing noisy and irrelevant ones. Panichella et al. [23] propose an
intent classifier to group the user reviews into the different cat-
egories: Feature Request, Problem Discovery, Information Seeking,
Information Giving and Other. In their follow-up work, SURF
[9] is proposed to summary reviews and recommend the use-
ful changes. Scalabrino et al. develop CLAP [49], a web appli-
cation, to categorize user reviews and cluster them. Moreover,
this tool can also prioritize the clusters of review. Grano et al.
[50] analyze the available information in user reviews and
indicate what type of user feedback can be actually adopted
for testing apps. Palomba et al. develop CRISTAL [33] to trace
informative crowd reviews onto source code changes, and
use this relations to analyze the impact of crowd reviews on
the development process. Ciurumelea et al. [51] analyze the
reviews and classify them according to the taxonomy and rec-
ommend for a particular review what are the source code files
that need to bemodified to hander the issue. Genc-Nayebi and
Abran [52] introduce the proposed solutions for mining online
opinions in app store user reviews. In this systematic literature
review, they also describe the challenges, unsolved problems,
and new contributions to software requirements evolution.
Sun et al. developed a novel system-PADetective [53] to
detect promotional attacks from a large number of user
reviewers. Xie et al. [54] proposed an effective approach to
detect abused apps and related collusive attachers by analyz-
ing the user reviews and corresponding raters in mobile app
store. Chen et al. [55] proposed an approach to identify attack-
ers of collusive promotion groups in an app store by exploiting
the unusual ranking change patterns fromuser reviews.

The above-mentioned previous studies focus on analyze,
classify, and extract the useful information from user reviews.
In our work, we utilize SURF [9] to extract user feedback to

ZHANG ETAL.: WHERE2CHANGE: CHANGE REQUEST LOCALIZATION FOR APP REVIEWS 2613

locate classes to be changed. However, we not only analyze
and cluster the user feedback from user reviews, but also
build a link between user feedback and issue reports. More-
over, we utilize enriched clusters of user feedback as queries
to recommend classes that should be changed for satisfying
users’ needs. This is a firstwork to use issue reports for enrich-
ing user feedback clusters in order to locate classes to be
changed inmobile apps.

9 CONCLUSION

In this paper, we develop a new approach to locate source
code classes that should be changed for each cluster of user
feedback in order to overcome the challenge when using the
previous method named CHANGEADVISOR. In the first
phase of our approach, we extract the user feedback from
user reviews and cluster them in two categories Discovery
and Feature Request; in the second phase, we build a link
between a feedback cluster and the issue reports by comput-
ing the textual similarity between them. Next we utilize the
issue reports to enrich the cluster of user feedback, and treat
the enriched version as a query to perform information
retrieval-based change request localization. In detail, we
propose a weight selection-based cosine similarity metric to
compute the similarity between the enriched cluster of user
feedback and the source code. Finally, our approach can
return a ranked list of classes that should be changed for
each cluster of user feedback.

In order to demonstrate whether our approach performs
better than CHANGEADVISOR, we execute the proposed
approach and the baseline method CHANGEADVISOR on
31,597 reviews and 3,272 issue reports of 10 open source
mobile apps in GitHub. The experimental results show that
our approach can locate more source code classes related to
change requests for more user feedback clusters produced by
user reviews than CHANGEADVISOR due to higher Top-N and
Recall values. We also compare the performance of our
approach with two IR-based fault localization approaches-
BLUiR and BLIA. The results show that our approach per-
forms better than them.Moreover,we also conduct the empiri-
cal study for analyzing user reviews and issue reports and the
results demonstrated that issue reports can help to improve
the performance of change request localization but cannot
replace user reviews to conduct this task formobile apps.

In the future, we plan to explore a better way to select the
user feedback related to real faults and feature requests
reported in issue reports. Moreover, we are interested in
developing a new method to locate source code classes to
be changed for each user feedback entry rather than a clus-
ter of user feedback.

ReplicationPackage. Ourdataset and source code canbe found
at: https://github.com/Jiachi-Chen/ReviewBugLocalization.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for
their quality reviews and suggestions. This workwas partially
supported by the National Key Research and Development
Plan of China underGrantsNo. 2018YFB1003900, theNational
Natural Science Foundation of China under Grant No.
61602258, Natural Science Foundation of Heilongjiang

Province under Grant No. LH2019F008, and Hong Kong RGC
Project underGrantNo. 152223/17E andNo. 152279/16E.

REFERENCES

[1] T. Zhang, J. Chen, X. Luo, and T. Li, “Bug reports for desktop soft-
ware and mobile apps in GitHub: What’s the difference?” IEEE
Softw., vol. 36, no. 1, pp. 63–71, Jan./Feb. 2019.

[2] N. Shahmehri, M. Kamkar, and P. Fritzson, “Semi-automatic bug
localization in software maintenance,” in Proc. Int. Conf. Softw.
Maintenance, 1990, pp. 30–36.

[3] A. T. Nguyen, T. T. Nguyen, J. Al-Kofahi, H. V. Nguyen, and
T. N. Nguyen, “A topic-based approach for narrowing the search
space of buggy files from a bug report,” in Proc. 26th IEEE/ACM
Int. Conf. Autom. Softw. Eng., 2011, pp. 263–272.

[4] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed? -
More accurate information retrieval-based bug localization based
on bug reports,” in Proc. 34th Int. Conf. Softw. Eng., 2012, pp. 14–24.

[5] R. Saha, M. Lease, S. Khurshid, and D. Perry, “Improving bug
localization using structured information retrieval,” in Proc. IEEE/
ACM 28th Int. Conf. Autom. Softw. Eng., 2013, pp. 345–355.

[6] K. C. Youm, J. Ahn, J. Kim, and E. Lee, “Bug localization based on
code change histories and bug reports,” in Proc. 22nd Asia-Pacific
Softw. Eng. Conf., 2015, pp. 190–197.

[7] S. Mcilroy, W. Shang, N. Ali, and A. E. Hassan, “User reviews of
top mobile apps in Apple and Google app stores,” Commun.
ACM, vol. 60, no. 11, pp. 62–67, 2017.

[8] F. Palomba et al., “Recommending and localizing change requests
for mobile apps based on user reviews,” in Proc. 39th Int. Conf.
Softw. Eng., 2017, pp. 106–117.

[9] A. Di Sorbo et al., “Whatwould users change inmy app? Summariz-
ing app reviews for recommending software changes,” in Proc. 24th
ACMSIGSOFT Int. Symp. Found. Softw. Eng., 2016, pp. 499–510.

[10] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in Proc. 26th Int. Conf. Neural Inf. Process. Syst.,
2013, pp. 3111–3119.

[11] D. Poshyvanyk, “Using information retrieval to support software
maintenance tasks,” in Prof. 25th IEEE Int. Conf. Softw. Maintenance,
2009, pp. 453–456.

[12] S. Lukins, N. Kraft, and L. Etzkorn, “Source code retrieval for bug
localization using latent Dirichlet allocation,” in Proc. 15th Work.
Conf. Reverse Eng., 2008, pp. 155–164.

[13] S. Rao and A. Kak, “Retrieval from software libraries for bug
localization: A comparative study of generic and composite text
models,” in Proc. 8th Work. Conf. Mining Softw. Repositories, 2011,
pp. 43–52.

[14] D. Kim, Y. Tao, S. Kim, and A. Zeller, “Where should we fix this
bug? A two-phase recommendation model,” IEEE Trans. Softw.
Eng., vol. 39, no. 11, pp. 1597–1610, Nov. 2013.

[15] F. Thung, T.-D. B. Le, P. S. Kochhar, and D. Lo, “BugLocalizer:
Integrated tool support for bug localization,” in Proc. 22nd ACM
SIGSOFT Int. Symp. Found. Softw. Eng., 2014, pp. 767–770.

[16] P. S. Kochhar, Y. Tian, and D. Lo, “Potential biases in bug localiza-
tion: Do they matter?” in Proc. 29th ACM/IEEE Int. Conf. Autom.
Softw. Eng., 2014, pp. 803–814.

[17] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Bug
localization with combination of deep learning and information
retrieval,” in Proc. 25th Int. Conf. Program Comprehension, 2017,
pp. 218–229.

[18] X. Ye, R. Bunescu, and C. Liu, “Learning to rank relevant files for
bug reports using domain knowledge,” in Proc. 22nd ACM SIG-
SOFT Int. Symp. Found. Softw. Eng., 2014, pp. 689–699.

[19] S. Wang and D. Lo, “Version history, similar report, and structure:
Putting them together for improved bug localization,” in Proc.
22nd Int. Conf. Program Comprehension, 2014, pp. 53–63.

[20] O. Chaparro, J. M. Florez, and A. Marcus, “Using observed behav-
ior to reformulate queries during text retrieval-based bug local-
ization,” in Proc. 33rd Int. Conf. Softw. Maintenance Evol., 2017,
pp. 376–387.

[21] T.-D. B. Le, R. J. Oentaryo, and D. Lo, “Information retrieval and
spectrum based bug localization: Better together,” in Proc. 10th
Joint Meeting Found. Softw. Eng., 2015, pp. 579–590.

[22] S. Park et al., “Hierarchical Dirichlet process topic modeling for
large number of answer types classification in open domain ques-
tion answering,” in Proc. 10th Asia Inf. Retrieval Soc. Conf., 2014,
pp. 418–428.

2614 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

https://github.com/Jiachi-Chen/ReviewBugLocalization

[23] S. Panichella, A. D. Sorbo, E. Guzman, C. A. Visaggio, G. Canfora,
and H. C. Gall, “How can i improve my app? Classifying user
reviews for software maintenance and evolution,” in Proc. 31st
IEEE Int. Conf. Softw. Maintenance Evol., 2015, pp. 281–290.

[24] N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang, “AR-miner:
Mining informative reviews for developers from mobile app mar-
ketplace,” in Proc. 36th Int. Conf. Softw. Eng., 2014, pp. 767–778.

[25] Y. Kong, D.Wang, L. Shi, S. C. N. Hui, andW. C.W. Chu, “Dice simi-
larity coefficients (DSC) of segmentation results using our approach
and three predefined metrics on noisy synthetic datasets at different
noise levels (online),” 2014. [Online]. Available: https://figshare.
com/articles/_Dice_similarity_coefficients_DSC_of_segm entation_
results_using_our_approach_and_three_predefined_metrics_on_
noisy_synt hetic_datasets_at_different_noise_levels_/968403

[26] H. C. Wu, R. W. P. Luk, K. F. Wong, and K. L. Kwok, “Interpreting
TF-IDF term weights as making relevance decisions,” ACM Trans.
Inf. Syst., vol. 26, no. 3, pp. 1–37, 2008.

[27] L. Wei, Y. Liu, and S.-C. Cheung, “OASIS: Prioritizing static analy-
sis warnings for Android apps based on app user reviews,” in
Proc. 11th Joint Meeting Found. Softw. Eng., 2017, pp. 672–682.

[28] L. De Vine, G. Zuccon, B. Koopman, L. Sitbon, and P. Bruza,
“Medical semantic similarity with a neural language model,” in
Proc. 23rd ACM Int. Conf. Inf. Knowl. Manage., 2014, pp. 1819–1822.

[29] A. Rosenberg and J. Hirschberg, “V-measure: A conditional
entropy-based external cluster evaluation measure,” in Proc. Joint
Conf. Empir. Methods Natural Lang. Process. Comput. Natural Lang.
Learn., 2007, pp. 410–420.

[30] F. Palomba et al., “Recommending and localizing code changes
for mobile apps based on user reviews: Online Appendix,” 2016.
[Online]. Available: https://sites.google.com/site/changeadvisor
mobile/

[31] E. Guzman andW. Maalej, “How do users like this feature? A fine
grained sentiment analysis of app reviews,” in Proc. IEEE 22nd
Int. Requirements Eng. Conf., 2014, pp. 153–162.

[32] S. Tata and J. M. Patel, “Estimating the selectivity of TF-IDF based
cosine similarity predicates,” SIGMOD Rec., vol. 36, no. 2, pp. 7–12,
2007.

[33] F. Palomba et al., “User reviews matter! Tracking crowdsourced
reviews to support evolution of successful apps,” in Proc. 31st
IEEE Int. Conf. Softw. Maintenance Evol., 2015, pp. 291–300.

[34] F. Wilcoxon, “Individual comparisons by ranking methods,”
Biometrics Bull., vol. 1, pp. 80–83, 1945.

[35] R. Ihaka and R. Gentleman, “R: A language for data analysis and
graphics,” J. Comput. Graphical Statist., vol. 5, no. 3, pp. 299–314,
2012.

[36] M. Gomez, R. Rouvoy, B. Adams, and L. Seinturier, “Mining test
repositories for automatic detection of UI performance regressions
in Android apps,” in Proc. IEEE/ACM 13th Work. Conf. Mining
Softw. Repositories, 2016, pp. 13–24.

[37] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Trans. Softw. Eng., vol. 42, no. 8,
pp. 707–740, Aug. 2016.

[38] J. A. Jones and M. J. Harrold, “Empirical evaluation of the taran-
tula automatic fault-localization technique,” in Proc. 20th IEEE/
ACM Int. Conf. Autom. Softw. Eng., 2005, pp. 273–282.

[39] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. Van Gemund, “A
practical evaluation of spectrum-based fault localization,” J. Syst.
Softw., vol. 82, no. 11, pp. 1780–1792, 2009.

[40] X. Xie, W. E. Wong, T. Y. Chen, and B. Xu, “Spectrum-based fault
localization: Testing oracles are no longer mandatory,” in Proc.
11th Int. Conf. Quality Softw., 2011, pp. 1–10.

[41] Lucia, D. Lo, and X. Xia, “Fusion fault localizers,” in Proc. 29th
ACM/IEEE Int. Conf. Autom. Softw. Eng., 2014, pp. 127–138.

[42] G. Laghari, A. Murgia, and S. Demeyer, “Fine-tuning spectrum
based fault localisation with frequent method item sets,” in Proc.
31st IEEE/ACM Int. Conf. Autom. Softw. Eng., 2016, pp. 274–285.

[43] A. Perez, R. Abreu, and A. van Deursen, “A test-suite diagnosability
metric for spectrum-based fault localization approaches,” in Proc.
39th Int. Conf. Softw. Eng., 2017, pp. 654–664.

[44] J. Xuan and M. Monperrus, “Learning to combine multiple rank-
ing metrics for fault localization,” in Proc. 30th IEEE Int. Conf.
Softw. Maintenance Evol., 2014, pp. 191–200.

[45] M. D. Syer, M. Nagappan, A. E. Hassan, and B. Adams,
“Revisiting prior empirical findings for mobile apps: An empirical
case study on the 15 most popular open-source Android apps,” in
Proc. Conf. Center Adv. Stud. Collaborative Res., 2013, pp. 283–297.

[46] P. Bhattacharya, L. Ulanova, I. Neamtiu, and S. C. Koduru, “An
empirical analysis of bug reports and bug fixing in open source
Android apps,” in Proc. 17th Eur. Conf. Softw. Maintenance Reengin-
eering, 2013, pp. 133–143.

[47] B. Zhou, I. Neamtiu, and R. Gupta, “A cross-platform analysis of
bugs and bug-fixing in open source projects: Desktop vs. Android
vs. iOS,” in Proc. 19th Int. Conf. Eval. Assessment Softw. Eng., 2015,
Art. no. 7.

[48] R. McCormick, “Google code is closing down because developers
aren’t using it,” 2015. [Online]. Available: http://www.theverge.
com/2015/3/13/8206903/google-code-is-closing-down-github-
bitbucket

[49] S. Scalabrino, G. Bavota, B. Russo, R. Oliveto, and M. D. Penta,
“Listening to the crowd for the release planning of mobile apps,”
IEEE Trans. Softw. Eng., vol. 45, no. 1, pp. 68–86, Jan. 2019.

[50] G. Grano, A. Ciurumelea, S. Panichella, F. Palomba, andH. C. Gall,
“Exploring the integration of user feedback in automated testing of
Android applications,” in Proc. IEEE 25th Int. Conf. Softw. Anal.
Evol. Reengineering, 2018, pp. 72–83.

[51] A. Ciurumelea, A. Schaufelbhl, S. Panichella, and H. C. Gall,
“Analyzing reviews and code of mobile apps for better release
planning,” in Proc. IEEE 24th Int. Conf. Softw. Anal. Evol. Reengin-
eering, 2017, pp. 91–102.

[52] N. Genc-Nayebi and A. Abran, “A systematic literature review:
Opinion mining studies from mobile app store user reviews,” J.
Syst. Softw., vol. 125, pp. 207–219, 2017.

[53] B. Sun, X. Luo, M. Akiyama, T. Watanabe, and T. Mori,
“Characterizing promotional attacks in mobile app store,” in Proc.
8th Int. Conf. Appl. Techn. Inf. Security, 2017, pp. 113–127.

[54] Z. Xie, S. Zhu, Q. Li, and W. Wang, “You can promote, but you
can’t hide: Large-scale abused app detection in mobile app
stores,” in Proc. 32nd Annu. Conf. Comput. Security Appl., 2016,
pp. 374–385.

[55] H. Chen, D. He, S. Zhu, and J. Yang, “Toward detecting collusive
ranking manipulation attackers in mobile app markets,” in Proc.
ACM Asia Conf. Comput. Commun. Security, 2017, pp. 58–70.

Tao Zhang received the BS degree in automation,
the MEng degree in software engineering from
Northeastern University, China, and the PhD deg-
ree in computer science from the University of
Seoul, South Korea. After that, he spent one year
with the Hong Kong Polytechnic University as a
postdoctoral research fellow. Currently, he is an
associate professor with the Faculty of Information
Technology,MacauUniversity of Science andTech-
nology (MUST). Before joining MUST, he was the
faculty member of Harbin Engineering University

and Nanjing University of Posts and Telecommunications, China.
He published more than 40 high-quality papers at renowned software
engineering and security journals and concerences such as the IEEE
Transactions on Software Engineering, IEEE Transactions on Information
Forensics and Security, IEEE Transactions on Dependable and Secure
Computing, IEEE Software, ICSE, etc. His current research interests
include mining software repositories and mobile software security. He is a
member of IEEE and ACM.

Jiachi Chen received the BS degree from the Insti-
tute of Service Engineering, HangZhou Normal
University, China, in 2016, and the MS degree from
the Department of Computing, Hong Kong Poly-
technic University, in 2017. After that, he spent one
year with the Hong Kong Polytechnic University as
a reserch assistant. Currently, he is working toward
the PhD degree in Faculty of Information Technol-
ogy, MonashUniversity, Australia.

ZHANG ETAL.: WHERE2CHANGE: CHANGE REQUEST LOCALIZATION FOR APP REVIEWS 2615

https://figshare.com/articles/_Dice_similarity_coefficients_DSC_of_segm entation_results_using_our_approach_and_three_predefined_metrics_on_noisy_synt hetic_datasets_at_different_noise_levels_/968403
https://figshare.com/articles/_Dice_similarity_coefficients_DSC_of_segm entation_results_using_our_approach_and_three_predefined_metrics_on_noisy_synt hetic_datasets_at_different_noise_levels_/968403
https://figshare.com/articles/_Dice_similarity_coefficients_DSC_of_segm entation_results_using_our_approach_and_three_predefined_metrics_on_noisy_synt hetic_datasets_at_different_noise_levels_/968403
https://figshare.com/articles/_Dice_similarity_coefficients_DSC_of_segm entation_results_using_our_approach_and_three_predefined_metrics_on_noisy_synt hetic_datasets_at_different_noise_levels_/968403
https://sites.google.com/site/changeadvisormobile/
https://sites.google.com/site/changeadvisormobile/
http://www.theverge.com/2015/3/13/8206903/google-code-is-closing-down-github-bitbucket
http://www.theverge.com/2015/3/13/8206903/google-code-is-closing-down-github-bitbucket
http://www.theverge.com/2015/3/13/8206903/google-code-is-closing-down-github-bitbucket

Xian Zhan received the BEng degree in computer
science from Wuhan University, Hubei, China, in
2010. Currently, she is working toward the PhD
degree in the Department of Computing, the Hong
Kong Polytechnic University. She is also an
exchange student with the School of Computer
Science and Engineering, Nanyang Technological
University. Her research interests include program
analysis, mobile security, NLP, and machine
learning.

Xiapu Luo received the PhD degree in computer
science from the Hong Kong Polytechnic University
and then spent two years with the Georgia Institute
of Technology as a postdoctoral research fellow. He
is an associate professor with the Department of
Computing, the Hong Kong Polytechnic University.
His current research interests include mobile/IoT
security and privacy, blockchain, network security
and privacy, software engineering, and Internet
measurement. He has received seven best paper
awards (e.g., INFOCOM’18, ISPEC’17, ISSRE’16,
etc.) and one paper received best paper nomination
(i.e., ESEM’19).

DavidLo received thePhDdegree from the School
of Computing, National University of Singapore, in
2008. He is currently an associate professor with
the School of Information Systems, Singapore
Management University. He has more than 10
years of experience in software engineering and
datamining research and has more than 100 publi-
cations in these areas. He received the Lee
Foundation, Lee Kong Chian, and Lee Kuan Yew
fellowships from the Singapore Management
University, in 2009, 2018, and 2019 respectively.

He has received a number of international research awards including five
ACM SIGSOFT distinguished paper awards for his work on software
analytics. He has served as general and program co-chair of several well-
known international conferences (e.g., IEEE/ACM International Confer-
ence on Automated Software Engineering), and editorial board member of
a number of high-quality journals (e.g., Empirical Software Engineering).
He is a distinguishedmember of ACMand senior member of the IEEE.

He Jiang is currently a professor with the Dalian
University of Technology and an adjunct professor
with the Beijing Institute of Technology. He is a
member of the China Computer Federation (CCF),
the Association for Computing Machinery (ACM),
and the Institute of Electrical and Electronics Engi-
neers (IEEE), respectively. His current research
interests include search-based software engineer-
ing and mining software repositories. He has pub-
lished more than 60 referred papers on journals
and international conferences, including the IEEE

Transactions Software Engineering, IEEE Transactions Knowledge and
Data Engineering, ICSE, SANER, etc., supported by the Program for New
Century Excellent Talents in University and the National Science Fund for
Excellent Young Scholars. In addition, he serves as the guest editors of
some journals and magazines, including the IEEE Computational Intelli-
gence, Journal of Computer Science and Technology, Frontiers of Com-
puter Science, etc. He is amember of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2616 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

