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Abstract—Deep learning techniques have shown promising
performance in automated software maintenance tasks associated
with bug reports. Currently, all existing studies learn the cus-
tomized representation of bug reports for a specific downstream
task. Despite early success, training multiple models for multiple
downstream tasks faces three issues: complexity, cost, and com-
patibility, due to the customization, disparity, and uniqueness
of these automated approaches. To resolve the above challenges,
we propose RepresentThemAll, a pre-trained approach that
can learn the universal representation of bug reports and handle
multiple downstream tasks. Specifically, RepresentThemAll
is a universal bug report framework that is pre-trained with
two carefully designed learning objectives: one is the dynamic
masked language model and another one is a contrastive learn-
ing objective, “find yourself”. We evaluate the performance
of RepresentThemAll on four downstream tasks, including
duplicate bug report detection, bug report summarization, bug
priority prediction, and bug severity prediction. Our experi-
mental results show that RepresentThemAll outperforms all
baseline approaches on all considered downstream tasks after
well-designed fine-tuning.

I. INTRODUCTION

Over the past decades, researchers have performed massive

efforts to automate the process of software maintenance, for

improving software development efficiency. Considering that

developers generally utilize bug reports to conduct software

maintenance activities, researchers thus design a series of

automated software maintenance tasks associated with bug

reports (ASMT-ABR for short), such as bug priority prediction

[1], [2], bug severity prediction [3], [4], duplicate bug report

detection [5], [6], and bug report summarization [7], [8].

Current studies mainly use deep learning techniques (i.e.,

neural networks) to construct their models for ASMT-ABR

[2], [5], [6], [9]–[12]. For example, Fang et al. [2] carefully

selected five elements in the bug report and concatenated

them, then utilized the graph convolutional network [13] to

learn the corresponding vector representation and performed

automated bug priority prediction. In duplicate bug report

detection, Budhiraja et al. [5] combined the textual elements

∗ Tao Zhang is the corresponding author.

of bug reports (e.g., summary and description) as a single

sample and used a word embedding network [14] to learn the

semantic representation of each sample. Afterward, they fur-

ther exploited a deep fully-connected neural network to learn

the probability distribution of duplicate and non-duplicate

bug reports. Following by Budhiraja et al., He et al. [6]

improved the performance of duplicate bug report detection by

introducing dual-channel convolutional neural networks [15].

Li et al. combined auto-encoder network and encoder-decoder

framework to automatically generate a summary of the bug

report according to its description. As for bug localization,

DeepLoc [11] utilized a word embedding network to represent

words in bug reports and utilized a convolutional neural

network to capture semantic features, then automatically locate

the buggy file.

Despite the aforementioned studies having obtained early
success, they also face an important challenge: existing ap-
proaches are designed for a specific ASMT-ABR and they
cannot serve for multiple downstream tasks in software main-
tenance. According to the prior studies [16], [17], there are

multiple tasks associated with bug reports in the bug resolution

process of software maintenance. However, training multiple
models to automate multiple downstream tasks in software
maintenance may face three issues: complexity, cost, and
compatibility, due to the customization, disparity, and
uniqueness of these automated approaches. As indicated

in the left Fig. 1, it is a meaningful vision, that is, employing

existing approaches to build an automated software mainte-

nance system. From the figure, we can observe that such a

system needs to parallelize multiple automated models because

of existing approaches’ customization, resulting in a relatively

high complexity. Due to the automated approaches’ disparity,

we need to conduct targeted pre-processing for bug reports

before passing them to the model. The above process appears

to be reasonable, but training multiple automated models for

multiple ASMT-ABR requires much cost of training resources,

storage, and service, and may cause the waste of resources.

Additionally, compatibility is a problem in the training pro-
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cess caused by the automated approaches’ uniqueness. This

is because there may exist version inconsistency or package

inconsistency in different approaches, which requires develop-

ers’ extra effort to upgrade all source code (e.g., migrate code

from PyTorch to TensorFlow). Therefore, the above analysis

provokes us to investigate: To what extent, can we use a
universal bug report representation to handle multiple
ASMT-ABR?

In order to resolve the aforementioned problems, we pro-

pose a universal approach that can be used for multiple ASMT-

ABR. As illustrated in the right Fig. 1, its core contains

two parts: one is a fundamental model to learn the universal

representation of bug reports, and another one is the fine-

tuning module that applies the learned representation of bug

reports for different ASMT-ABR. Hence, the fundamental

model needs to be capable enough to learn the context

knowledge of bug reports and fully understand them, providing

effective semantic representation to the fine-tuning module.

To achieve our goal, we build a fundamental model, namely

RepresentThemAll, by the combination of the pre-trained

language model (PLM) [18]–[20] and contrastive learning

[21]–[24]. Specifically, RepresentThemAll first is pre-

trained by the dynamic masked language model objective in

a self-supervised way, to learn the contextual information of

each word in bug reports according to its appearing con-

text. Afterward, we design a siamese network [25] based

contrastive learning objective, “find yourself ”, to further pre-

train RepresentThemAll in a self-supervised way. By

contrastive learning pre-training, RepresentThemAll can

model the contextual representation of bug reports at the

sequence level, which helps learn the semantic differences

between bug reports, improving the effect of the subsequent

fine-tuning.

After finishing pre-training, we build two different fine-

tuning modules: one is designed for classification tasks, such

as duplicate bug report detection [6] and bug priority predic-

tion [2], and another one is designed for the generation task,

like bug report summarization [7]. For the classification task,

we can connect RepresentThemAll with an extra classifi-

cation layer and perform the corresponding fine-tuning. As for

the generation task, we combine RepresentThemAll with

the Seq2Seq framework [26], to build an end-to-end generative

architecture.

To evaluate the performance of RepresentThemAll, we

compare it with the baseline approaches on four ASMT-ABR,

i.e., bug report summarization, duplicate bug report detection,

bug priority prediction, and bug severity prediction. Specifi-

cally, we collected a large-scale bug report dataset that con-

tains more than 250,000 bug reports, then split it into the train-

ing set, validation set, and test set according to 80%/10%/10%.

We use the training set to pre-train RepresentThemAll.

When finishing pre-training, we further utilize the training

set to fine-tune RepresentThemAll on bug report summa-

rization, bug priority prediction, and bug severity prediction

tasks, then evaluate RepresentThemAll on the validation

and test sets. Since duplicate bug report detection requires

duplicate/non-duplicate pairs of bug reports to perform the

experiments, we thus conduct all the relevant experiments on

the Open Office dataset released by Lazar et al. [27]. The ex-

perimental results show that RepresentThemAll achieves

state-of-the-art results among all four tasks. Moreover, we

also compare RepresentThemAll with other PLMs, and

experimental results demonstrate that RepresentThemAll
is more effective for ASMT-ABR.

To sum up, we make the following contributions:

• We propose RepresentThemAll, a novel and fun-
damental approach that is pre-trained by the dynamic

masked language model and contrastive learning objec-

tives in a self-supervised way, it thus can learn the

universal representation of bug reports.

• Pre-trained RepresentThemAll can be applied to

downstream tasks in software maintenance (i.e., ASMT-

ABR) by supervised fine-tuning. To our knowledge, we

are the first to design an approach that can serve multiple

downstream tasks in software maintenance.

• We evaluate RepresentThemAll on four downstream

tasks and the experimental results show that it achieves

state-of-the-art results on all considered tasks.

• Data Availability. We release pre-trained Represent-
ThemAll in Hugging Face Transformers1. Besides, we

introduce how to fine-tune RepresentThemAll by

some executable examples in our GitHub repository2.

Paper Organization. The remainder of this paper is organized

as follows. Section II describes the background and related

work. Section III elaborates on the framework of the proposed

RepresentThemAll. Section IV introduces the experi-

mental setup, including research questions, dataset, baselines,

evaluation metrics, and experimental environment. Section V

presents the experimental results and analysis. Section VI

discusses the open questions as well as threats to validity.

Finally, Section VII concludes this paper and points out the

future directions.

II. BACKGROUND AND RELATED WORK

A. Bug Reports

A bug report is a specific report that contains information

about what is wrong and where developers should fix the

given bug, which is submitted to bug tracking systems (e.g.,

Bugzilla, JIRA) by users or developers and is beneficial for

software maintenance. Considering the circle of the software

maintenance [16], bug reports have the potential to improve

the efficiency of developers when tackling a newly reported

bug. For example, bug severity and priority in bug reports [2],

[28] can reduce the time cost of bug assignment while bug

localization tools [29]–[31] can reduce the time of bug fixing.

As shown in Fig. 2, a bug report is composed of multiple

elements, such as Summary, Description, Comment, Priority,

and Severity. Generally, many studies [1], [2], [32] tend to use

1https://huggingface.co/Colorful/RTA
2https://github.com/ICSE-2023/RepresentThemALL
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Pre-process A Pre-process B ... Pre-process N

Bug report

Model A Model B Model N

Output A Output B Output N

...

...

Fundamental model

Output  A,  B,  ... N

Pre-process

Fine-tuning modules

Existing work: customized  
representation for each task

Our approach

Dynamic masked
language model

Contrastive learning 
"Find yourself" &

Pre-training

Classification layer Seq2Seq framework &

Fine-tuning

Classification task Generation task

Fig. 1. The comparison of automating the process of software maintenance between existing approaches (left part) and our approach (right part).

Fig. 2. An example of Eclipse bug report.

elements with enriched textual information, such as Summary

and Description, to perform various of ASMT-ABR.

B. Contrastive Learning

The core concept of contrastive learning [33] is to learn

a representation that can pull semantically similar sentences

together and push the semantically dissimilar sentences apart.

Contrastive learning training thus can enable the model to fully

learn the semantic difference between sentences. Suppose that

there is a set of paired sentences S = {(si, s+i )}ni=1, where si
and s+i are semantically similar sentence pair. Following the

contrastive learning framework proposed by Chen et al. [21],

the training objective in contrastive learning can be defined as

follows:

�i = − log
esim(ri,r

+
i )

∑N
j=1 e

sim(ri,r
+
j )

(1)

where ri and r+i are the representation of si and s+i , sim(a, b)

is the cosine similarity aT b
||a||·||b|| , and N is the batch size. For

a sentence pair in the batch, its negative samples are other

sentence pairs in this batch.

C. Related Work

a) ASMT-ABR: INSPect [28] leveraged BM25Fext

method to find top-k nearest neighbors of a newly submitted

bug report in historical labeled bug reports, then used these

k nearest neighbors to automatically predict the severity for

the new bug. DRONE is the first NN-based model to achieve

automated bug priority prediction. DWEN [5] can be used

to detect duplicate bug reports by measuring their semantic

similarity. Additionally, DeepSum [7] is an NN-based tool

that can automatically generate titles for bug reports, and

DEMIBUD [34] can detect miss information (e.g., expected

behavior and steps to reproduce) in bug descriptions. Bug

reports can also be used in fixer recommendation [35], bug

localization [30], and program repair [36]. Wu et al. proposed

ST-DGNN, which combines joint random walks and graph

neural network, and can automatically recommend suitable

fixers for new bugs. Xiao et al. [11] proposed DeepLoc which

performs bug localization by learning semantic information of

bug reports. Koyuncu et al. [37] proposed iFixR, which is a

bug report driven program repair tool.

The above approaches learn the customized representation

of bug reports and solve a specific ASMT-ABR. By contrast,

RepresentThemAll aims to learn the universal represen-
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tation of bug reports and handle multiple ASMT-ABR by

connecting the fine-tuning module.

b) PLMs in Software Engineering Field: As the success

of PLMs in the natural language processing (NLP) community,

PLMs have been widely utilized in the software engineering

field. For example, Alon et al. [38] proposed a structural

language model of code, which is pre-trained on paths of the

abstract syntax tree and performs the arbitrary code completion

for Java and C# code. Feng et al. [19] proposed CodeBERT,

which is pre-trained on CodeSearchNet Corpus [39] and can

be fine-tuned for code related tasks, e.g., code search [40],

[41] and code summarization [42], [43]. PLMs are also used

to perform program repairs. For instance, Jiang et al. [44]

proposed CURE, a code-aware model for automatic program

repair. Before training CURE on the dataset of program repair,

they first pre-trained it on a large-scale software corpus to

learn general contextual representation for code, their model

thus achieved state-of-the-art results.

c) PLMs Related to Bug Report: Ardimento et al. [45]

predicted bug-fixing time by directly fine-tuning BERT on their

dataset. Li et al. [46] proposed ARB-BERT, which performs

aging-related bug report classification by fine-tuning BERT.

Except for the above two tasks, Isotani et al. [12] detected

duplicate bug reports by fine-tuning Sentence-BERT. Bo
et al. [47] achieved automatically bug question answering

by fine-tuning BERT on their collected dataset. Henao et al.
[48] proposed M-BERT, which is fine-tuned on BERT and

effectively distinguishes feature requests and bug reports in

user comments.

Different from the above approaches that only fine-tune the

existing PLMs in the NLP field for a specific ASMT-ABR,

RepresentThemAll is pre-trained on the bug report corpus

to learn the universal representation of bug reports, serving

multiple ASMT-ABR. In detail, it can be applied for different

ASMT-ABR by connecting with suitable fine-tuning modules.

III. APPROACH

In this section, we first introduce how we perform text

encoding for bug reports. Then, we describe the pipeline of

RepresentThemAll, which can be seen in the right of

Fig. 1. Specifically, it includes input & output representation,

model architecture, dynamic masked language model, con-

trastive learning model, and fine-tuning process.

A. Text Encoding

Before feeding the input to RepresentThemAll, we

need to build a vocabulary and use it to perform the text

encoding to bug reports, transforming them into a set of

numerical sequences. Following the literature [49], we use

Byte-level BPE (BBPE) to build the vocabulary. BPPE uses

UTF-8 byte n-grams to encode the text, by which a sentence

is encoded into a set of byte n-grams. Considering that UTF-

8 encoding contains 256 basic bytes, BBPE vocabulary has

no OOV tokens. There are other methods to build vocabulary.

For example, a simple method for building the vocabulary is

to count the unique words in the training corpus (word-level

vocabulary), but it may produce a large vocabulary and cannot

solve the out-of-vocabulary (OOV) problem [50]. The former

may affect the learning ability of neural networks because the

large vocabulary causes the data-sparse problem [51], and the

latter limits the generalizability of the model since words in

other corpora may not appear in the built vocabulary. Instead of

building a word-level vocabulary, Sennrich et al. [50] proposed

byte-pair encoding (BPE), decomposing words into a set of

character n-grams (subword units) and building subword-level

vocabulary, and the OOV words can be represented by the

combination of subword units.

BPE can alleviate the OOV problem, however, Unicode

characters may account for a sizeable portion of BPE vo-

cabulary when modeling large and diverse corpora [49], [52],

which affects the performance of model learning. In contrast,

Unicode characters can be encoded into 1-4 bytes by BBPE.

Hence, BBPE is able to effectively control the level of the

rare word decomposition and symbol sharing across different

languages [49]. This helps us build the vocabulary for bug

reports since they contain both natural language and code,

owning more Unicode characters.

B. Input and Output Representation

To facilitate the use of RepresentThemAll, we insert

two tokens into each bug report sequence, namely S =
{[CLS], w1, w2, ..., wn, [EOS]}, where n is the length of

the bug report sequence. [CLS] is a special token in front of

the bug report sequence and we regard its final state represen-

tation as the aggregated sequence representation that contains

the semantic information of the whole bug report, which can be

used in classification tasks or contrastive learning training. For

each bug report sequence, we obtain its input representation

by summing up the corresponding word embedding [14] and

position embedding [53]. In the word embedding, we utilize

a lookup table Ew ∈ R
de×|V| to map each token in S into a

vector ew ∈ R
de , where de is the embedding dimension and

|V| is the vocabulary size. In the position embedding, we use

another lookup table Ep ∈ R
de×L to map the ordinal position

of each token in S into a vector px ∈ R
D, where L is the max

length of the sequence. Therefore, the input representation of

S can be computed as follows:

Si = Ew(S) + Ep(S). (2)

The output representation of RepresentThemAll contains

two parts: 1) the universal contextual representation of each

token in the bug report sequence; 2) the contextual represen-

tation of [CLS].

C. Model Architecture

The model architecture of RepresentThemAll is

stacked with 12 bidirectional Transformer encoder layers [53].

As shown in Fig. 3, it is one Transformer encoder layer,

which is mainly constructed by a multi-head self-attention

network and a feed-forward network (FFN). Specifically, the

input representation Si is projected into Q, K, and V vectors
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Q,K,VLayer Normalization

Residual Connection

Feed Forward Layer Normalization Outputs

Residual Connection

Scaled Multi-Head
Attention

Fig. 3. Transformer encoder layer.

by three individual and learned linear projections, which are

shown as follows:

Q = SiW
Q,K = SiW

K , V = SiW
V , (3)

where Q, K, and V ∈ R
de . Then, we can compute the output

of the self-attention network (SAN) as:

SAN(Q,K, V ) = softmax(
QKT

√
de

). (4)

To obtain the output of multi-head SAN, we can repeat the

Eq. 3 and Eq. 4 h times with different linear projections. In this

situation, h is the number of attention heads, and we denote

the dimension of Q, K, and V as dq , dk, and dv , all of whom

are equal to de/h. Hence, the output of multi-head SAN is

computed as follows:

OM = MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O,

(5)

where Concat is a concatenation operation and the projection

WO ∈ R
hdv×de . headh is calculated as follows:

headh = SAN(SiW
Q
h , SiW

K
h , SiW

V
h ), (6)

where the projections WQ
h ∈ R

De×dq ,WK
h ∈ R

de×dk , and

WV
h ∈ R

de×dv . Afterward, we employ a residual connection

[54] to the multi-head SAN, followed by a layer normalization

[55], which can be expressed as:

ON = LayerNorm(inputs +OM ) (7)

where ON is the output of the normalization layer. Next, the

normalization layer is followed by a fully connected FFN,

which includes two linear projections and a ReLU activation

function. The output of FFN is computed as follows:

OF = ReLU(ONW1)W2 + b2, (8)

where parameter matrices W1 ∈ R
de×dff and W2 ∈ R

dff×de .

dff is equal to 4de. Finally, the output of the encoder layer

can be expressed as follows:

outputs = LayerNorm(ON +OF ) (9)

D. Dynamic Masked Language Model

Fig. 4 gives a pipeline of RepresentThemAll pre-

trained with the masked language model objective. Given a

bug report sequence S as the input, we first select a random

set of tokens in S to mask out. Specifically, we replace these

tokens with a special [MASK] token. Following BERT [18],

Bug Report Sequence

Dynamic Masking & Encoding

RepresentThemAll

M M M

Predict Predict Predict

Dynamic Masked Language Model

M M M

M M M

...

Dynamic Masking

Fig. 4. RepresentThemAll predicts masked tokens according to their
context. “M” denotes the masked token. Due to the dynamic masking, masked
tokens in the bug report sequence are different at each epoch.

E
Bug report 1

...
Bug report N

...
R

R

E
Bug report 1

...
Bug report N

...
R

R

E RepresentThemAll

R Representation of
bug report

Positive instance

Negative instance

Find yourself

Fig. 5. Siamese RepresentThemAll network with shared parameters
predicts the input bug report itself from in-batch negative bug reports. N
is the batch size.

we select 15% of the tokens in S to mask out by replacing

them with the following three ways:

• the [MASK] token with the 80% probability;

• a random token with the 10% probability;

• the unchanged token with the 10% probability.

Considering that our dataset is still small (compared with the

pre-trained corpus in NLP community), following RoBERTa
[52], we take a dynamic masking strategy to mask each

bug report 10 times so that each bug report is masked in

10 different ways. In other words, we expand the original

training set 10 times in the pre-training stage, which helps

RepresentThemAll fully learn the contextual information

of every token in bug reports.

When feeding the input to RepresentThemAll, we

present an objective to train it, called dynamic masked lan-

guage modeling. It enables RepresentThemAll to predict

the original token from the masked token according to its

context. Different from the standard autoregressive language

model [56] that predicts the next token by the current context

(its left context), the dynamic masked language model enables

the model to predict the masked token by its left and right
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context, learning the comprehensive contextual information.

The dynamic masked language model objective is formulated

by maximizing the following log-likelihood:

LDMLM(θ) =
∑

i∈P

− log p(wi|Ŝ), (10)

where the probability p is modeled by RepresentThemAll,

P is a set of positions of masked tokens, wi is the masked

word, and Ŝ is the rest words.

Pre-training Detail In this work, we denote the number

of layers (i.e., Transformer encoder layer) as L. Follow-

ing the previous work [52], the hyperparameter setting of

RepresentThemAll is: L = 12, de = 768, h = 12, dff =
3072, dq, dk, dv = 64. We utilize Adam [57] with a learning

rate of 5e-5, β1 = 0.9, β2 = 0.98, L2 weight decay of

0.01, and a linear decay of the learning rate, to optimize

RepresentThemAll. We use dropout probability of 0.1 on

all layers to avoid overfitting. We train RepresentThemAll
with a batch size of 16 bug report sequences whose max

length is 512 for about 270,000 steps, which is equal to 20

epochs. We evaluate RepresentThemAll every 10K on the

validation set and keep the best checkpoint for the subsequent

pre-training. We use the weight of RoBERTa [52] to initialize

RepresentThemAll, which is the same as CodeBERT [19]

and BioBERT [58].

E. Siamese Network Based Contrastive Learning

When finishing the above-mentioned pre-training, we fur-

ther pre-train RepresentThemAll with our built con-

trastive learning objective, called “find yourself ”. The goal

of “find yourself ” is to let RepresentThemAll predict

the input bug report itself from a set of negative instances.

According to the introduction of contrastive learning (we

described it in Section II-B), for each bug report, we need to

build positive and negative instances for it. Since we use the

mini-batch method to train the neural models, the bug reports

in a batch are negative instances of each other. The remaining
problem is how to build the positive instance, which is also
the core problem of contrastive learning.

According to our observation, the vanilla Transformer en-

coder layer uses dropout twice: one is placed on the multi-

head self-attention network layer and another one is placed

on the feed-forward network layer. Considering that dropout
works by randomly masking some neural units, we pass a bug

report to the RepresentThemAll twice, by which we can

obtain two different but semantically similar representations

of the bug report and they are the positive instances of each

other. As shown in Fig. 5, we achieve the above process

by designing a siamese RepresentThemAll network with

shared parameters. We pass the same batch of bug reports

S to each RepresentThemAll, and get the corresponding

representations:

Rd = RTA(S; d), Rd
′
= RTA(S; d′

) (11)

RepresentThemAll

B

B

B B...

Classification 
Layer 

L L L...

LBug report or pair
of bug report

Label

(a) We add a classification layer to RepresentThemAll to perform the
classification task.

RepresentThemAll

...

Auto-regressive 
Decoder 

B1 B2 B3 Bn ...[bos] T1 T2 Tm

... [eos]T1 T2 Tm

Bn TmToken in bug report Generated token

(b) When RepresentThemAll is used for generation tasks, the whole
architecture is based on the seq2seq framework.

Fig. 6. RepresentThemAll for classification and generation task.

where RTA is RepresentThemAll, and (d, d
′
) are different

dropout masks. Then, the training objective of “find yourself ”

is:

� =
∑

rdi ∈Rd

− log
esim(rdi ,r

d
′

i )

∑
rd

′
j ∈Rd′ e

sim(rdi ,r
d
′

j )
, j �= i (12)

where rd
′

i is the positive instance of rdi and rd
′

j is its negative

instance. For a batch with size N , each bug report in it has

N − 1 negative instances. Therefore, “find yourself ” lets the

siamese RepresentThemAll network find the input bug

report itself from N − 1 negative instances.

Pre-training Detail All settings are the same as pre-training

RepresentThemAll with the dynamic masked language

model except we change the training epoch to 3 and batch

size to 64. Additionally, we evaluate RepresentThemAll
per 1K steps on the validation set and keep the best checkpoint

for the subsequent fine-tuning.

F. Fine-tuning RepresentThemAll

We group all ASMT-ABR into two categories: classi-

fication and generation. Fig. 6 shows how to fine-tune

RepresentThemAll for the classification and generation

tasks. For the classification task, we add a classification layer

to RepresentThemAll, which can be seen in Fig. 6(a).

For each task, we simply pass the task-specific inputs into
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the whole model and fine-tune all the parameters. In the

duplicate bug report detection task, for example, we pass the

pair of bug reports into the RepresentThemAll, getting

the representation of each bug report. Then, the classification

layer predicts whether these two bug reports are duplicate.

For the generation task, we put RepresentThemAll into

the seq2seq framework, building an encoder-decoder network.

For each task, we simply plug the task-specific inputs into

the whole model and fine-tune all the parameters end-to-end.

Taking the bug report summarization task as an example, we

pass the bug description into the encoder, then the decoder

outputs the bug report title.

IV. EXPERIMENTAL SETUPS

A. Research Questions

RQ1: How effective is RepresentThemAll when

compared to (1) the baseline approaches in the clas-

sification task, and (2) the baseline approaches in the

generation task?

To resolve the produced issues (i.e., complexity, cost,

and compatibility) of training multiple models for multi-

ple downstream tasks in software maintenance, we pro-

pose a universal approach, RepresentThemAll, to handle

multiple downstream tasks. In RQ1, we explore whether

RepresentThemAll can replace multiple existing ap-

proaches to serve multiple downstream tasks, by retrieving its

effectiveness and usability. We thus choose three classification

tasks and one generation task, including duplicate bug report

detection, bug priority prediction, bug severity prediction, and

bug report summarization. For duplicate bug report detection,

we pass the pair of bug reports to RepresentThemAll, then

the model predicts whether these two bug reports are duplicate.

For bug priority and severity predictions, we pass the bug

report to RepresentThemAll, and then it outputs the bug

report’s priority or severity. As for bug report summarization,

we input the bug description to RepresentThemAll, then

gain the bug report title.

RQ2: How effective is RepresentThemAll when

compared to other pre-trained language models on four

downstream tasks?

Considering that RepresentThemAll is pre-trained with

the dynamic masked language model and “’find yourself ’ ob-

jectives, we think that it is necessary to compare it with other

pre-trained language models, to further verify its effectiveness.

In RQ2, therefore, we mainly compare RepresentThemAll
with some famous pre-trained language models, retrieving its

context-learning capabilities.

RQ3: How does “find yourself ” objective contribute to

the performance of RepresentThemAll?

TABLE I
THE STATISTICS OF BUG REPORTS IN EACH PROJECT.

Project Number of bug reports Average Length

Mozilla 112,750 142.61
Eclipse 106,627 114.13

Netbeans 23,236 200.15
GCC 33,026 229.21

Overall 275,639 171.53

TABLE II
THE STATISTICS OF OPEN OFFICE DATASET.

Index Pair of bug reports Duplicate Non duplicate

Training set 122,297 89,027 33,270
Validation set 15,287 11,005 4,282

Test set 15,288 11,809 4,199

In this work, we design a new contrastive learning ob-

jective, “find yourself ” and utilize it to further pre-train

RepresentThemAll, for learning the semantic differ-

ence between bug reports. In order to explore the im-

pact of “find yourself ” objective, we conduct an ablation

study on all downstream tasks. We first remove “find your-
self ” objective and pre-train RepresentThemAll from

scratch, then fine-tune the pre-trained RepresentThemAll
on all downstream tasks. Afterward, we also explore how

dropout rate affects “find yourself ” objective. Specifically,

we use “find yourself ” objective with different dropout
rates, e.g., {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}, to pre-train

RepresentThemAll, then conduct statistics on fine-tuning

results on all downstream tasks.

B. Dataset

We collect bug reports from four open-source repositories of

Bugzilla, i.e., Mozilla, Eclipse, Netbeans, and GNU compiler

collection (GCC). Specifically, we have collected 275,639 bug
reports from Feb. 2000 to Sep. 2020. According to our

investigation, the Description and Summary of bug reports

are used as the inputs in most ASMT-ABR [1], [2], [59], we

concatenate the textual content of these two elements as a

bug report sequence, in which Summary is the first sentence.

Table I gives statistics of bug reports in each project. Then,

we split 80% of all bug reports into the training set, 10%

of bug reports into the validation set, and the remaining bug

reports into the test set. We first use this dataset to pre-

training RepresentThemAll, then use it to fine-tune pre-

trained RepresentThemAll on bug priority prediction, bug

severity prediction, and bug report summarization. As for the

duplicate bug report detection, we conduct all experiments on

the public Open Office dataset released by Lazar et al. [27],

whose statistics are shown in Tabel II. In the Open Office

dataset, Lazar et al. pair two bug reports and label them

according to the fact whether they are semantically similar.

In our experiments, we use the training set to perform pre-

training and training, then use the validation and test sets
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to complete the evaluation. We do not conduct general pre-

processes (e.g., rare words removal, stop word removal, special

symbols removal, etc) for bug reports because BBPE can

encode each token in bug reports, which reduces the time cost

and improves the generalizability of RepresentThemAll.

C. Baselines and Evaluation Metrics

a) Bug report summarization: Bug report summariza-

tion, also known as bug report title generation, is a task that

can automatically generate the bug report title from the bug

description. Work in this area of research has generally focused

on generating a short natural language title from a given

description in the bug report. In this work, we select DeepSum
[7], BugSum [8], PRHAN [60], and Transformer [53] as

baselines, all of whom are NN-based, RNN-based or SAN-

based approaches. We measure all approaches’ performance

by composite BLEU (c.B.) [61] and ROUGE-L (R.L), which

are widely in various generations tasks such as code summa-

rization [42], code translation [62], and machine translation

[63], to measure the similarity between the sentence generated

by models and the gold sentence.

b) Duplicate bug report detection: Duplicate bug report

detection can help developers quickly distinguish duplicate

bug reports in newly submitted bug reports, reducing their

time-consuming. In this work, we choose Siamese [64],

DWEN [5], and DC-CNN [6] as baselines, all of whom are built

based on NN, RNN, or CNN. We utilize accuracy (A), recall

(R), precision (P), and F1-score (F) to measure all approaches’

performance, which is the same as the prior work [6].

c) Bug priority prediction: Bug priority prediction is to

automatically predict the bug priority (i.e., P1-P5) for the given

bug report. In this work, we select word2vec [14], cPur
[32], and PPWGCN [2] as baselines. We utilize accuracy (A),

recall (R), precision (P), F1-score (F), and weighted average

(W.avg.) F1-score3 to measure all approaches’ performance.

d) Bug severity prediction: Similar to bug priority pre-

diction, bug severity prediction can automatically predict the

bug severity (i.e., Blocker (B.), Critical (C.), Major (Ma.),

Minor (Mi.), and Trivial (T.)) for the given bug report. In

this work, we select BSP-QASO [4], DNNSPBP [10], and

PPWGCN [2] as baselines. The evaluation metrics for bug

severity prediction are the same as bug priority prediction.

e) Baselines in RQ2: We choose two PLMs in the

NLP community, i.e., BERT [18] and RoBERTa [52], and

compare RepresentThemAll against them. We also choose

CodeBERT [19] and seBERT [65] as another two baselines.

The former is a PLM for code-natural language representation

and achieves state-of-the-art results on code search [41] and

code comment generation [42]. The latter is a domain-specific

BERT pre-trained with software engineering data (i.e., Stack

Overflow posts, GitHub issues, Jira issues, and GitHub commit

3It may result in an F-score that is not between pre-
cision and recall. More details can be seen https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.precision recall fscore su-
pport.html.

TABLE III
RESULTS ON BUG REPORT SUMMARIZATION.

Model R.1 R.2 R.L c.B.

DeepSum 17.60 8.05 17.00 3.73
BugSum 25.91 11.66 24.69 5.81
PRHAN 23.95 10.71 22.14 5.18

Transformer 26.76 12.10 24.65 6.07
RepresentThemAll 39.19 20.57 35.97 10.13

TABLE IV
RESULTS ON DUPLICATE BUG REPORT DETECTION.

Index A (%) R (%) P (%) F (%)

Siamese 83.99 85.86 86.38 86.12
DWEN 93.04 94.09 93.89 93.99

DC-CNN 94.29 96.70 93.65 95.15
RepresentThemAll 97.88 98.54 98.54 98.54

messages). For all baselines, we only fine-tune them on the

dataset for four downstream tasks.

D. Experimental Environment

We conduct experiments on a server that owns 4x 20-

core 2.2GHz Intel Xeon with 512GB memory and utilize 1

NVIDIA Tesla V100 with 32GB memory running on CUDA

version 10.2. To implement our model, we use PyTorch [66]

V.1.6.0, transformers [67] v.4.17.0, and datasets [68] v.1.17.0

with GPU support. For the baseline approaches whose source

code is released, we directly re-run the source code on our

dataset; For the baseline approaches whose source code is

not provided, we re-implement them according to the corre-

sponding literature and keep all parameter setting constant.

We calculate all evaluation metrics by the datasets package

and the scikit-learn package.

V. EVALUATION

A. Answer to RQ1: Retrieval Effectiveness

Table III and Table IV compare the performance of

RepresentThemAll with the baseline approach in bug

report summarization and duplicate bug report detection, re-

spectively. Table V shows the results on bug priority prediction

and bug severity prediction.

In bug report summarization, RepresentThemAll out-

performs DeepSum, BugSum, PRHAN, and Transformer
by large margins in terms of all ROUGE-L metrics (8.47

point to 21.59 point). In terms of composite BLEU, the im-

provements are 6.40, 4.32, 4.95, and 4.06 points, respectively.

DeepSum is the worst performing model, and a potential

reason is that the simple fully connected neural network

layer cannot learn the contextual information from bug re-

ports. Since the gated recurrent unit can learn partial con-

textual information, BugSum performs better than DeepSum.

Nevertheless, the improvement is limited because the gated

recurrent unit is weak at modeling long-range dependency.

Transformer is the best baseline approach because self-

attention networks can learn contextual information from the

textual sequences without considering the distance of tokens in
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TABLE V
RESULTS ON BUG PRIORITY & SEVERITY PREDICTION. WE DENOTE “REPRESENTTHEMALL” AS “RTA”.

Model Metric
Bug Priority Prediction Bug Severity Prediction

Metric Model
P1 P2 P3 P4 P5 W.avg. W.avg. B. C. Ma. Mi. T.

RTA

P% 64.87 51.91 82.12 31.78 76.65 72.32 65.11 72.34 71.59 60.90 59.57 62.21 P%

RTA
R% 65.81 45.91 87.11 9.71 54.12 73.49 64.72 68.68 63.56 69.41 60.12 53.30 R%

F% 65.34 48.73 84.54 14.88 63.44 72.69 64.73 70.46 67.34 64.88 59.84 57.42 F%

A% 73.49 64.72 A%

PPWGCN

P% 57.60 37.43 82.37 4.30 47.90 67.34 55.54 56.30 64.74 54.75 50.79 43.75 P%

PPWGCN
R% 58.70 41.01 56.91 46.00 57.93 54.24 55.24 64.70 57.09 56.57 44.73 51.15 R%

F% 58.15 39.14 67.31 7.87 52.44 59.13 55.22 60.21 60.68 55.64 47.57 47.16 F%

A% 54.24 55.24 A%

word2vec

P% 56.28 26.59 64.46 3.57 44.72 54.60 54.83 62.48 64.88 51.26 45.38 48.45 P%

DNNSPBP
R% 18.37 10.35 92.94 0.29 46.51 60.75 54.18 51.00 59.34 60.87 49.25 33.56 R%

F% 27.70 14.90 76.13 0.53 45.60 53.59 54.12 56.16 61.98 55.65 47.24 39.65 F%

A% 60.75 54.18 A%

cPur

P% 58.75 61.89 64.22 0.00 80.26 62.03 54.21 59.92 63.50 48.22 49.37 51.93 P%

BSP-QASO
R% 25.28 7.10 96.87 0.00 51.59 63.92 53.47 54.25 58.03 68.54 38.39 19.01 R%

F% 35.35 12.73 77.23 0.00 62.81 55.72 52.42 56.94 60.64 56.61 43.19 27.83 F%

A% 63.92 53.47 A%

the sequence. Although PRHAN also adopts self-attention net-

works, it performs worse than Transformer and BugSum.

We think the potential reason is that PRHAN is designed

for pull request summarization [69] and is not suitable for

modeling bug report sequences. Compared with the baseline

approaches, RepresentThemAll is constructed by stacking

Transformer encoder layers and pre-trained on the large-scale

bug report corpus, which enables it to fully learn the context-

related information and knowledge in bug reports, generating

effective representations for the subseuqent fine-tuing. There-

fore, RepresentThemAll achieves state-of-the-art results

on bug report summarization.

In duplicate bug report detection, RepresentThemAll
outperforms Siamese, DWEN, and DC-CNN by 12.42, 4.55,

and 3.39 points in terms of F1-score, respectively. In terms

of accuracy, the improvements are 13.89, 4.84, and 3.59

points. From Table IV we can observe that each approach

achieves relatively high results on the Open Office dataset.

Moreover, the performance improvement is positively corre-

lated with the model’s semantics learning ability. Compared

with the single-layered neural network used in Siamese,

word embedding and deep neural networks can learn more

semantic information, which brings performance improvement

for DWEN. Similarly, DC-CNN achieves higher results due to

the better semantics learning ability of multi-layer dual CNN.

As for RepresentThemAll, it is designed by stacking

12 Transformer encoder layers, which can fully learn the

global contextual information for each token. Additionally, we

conduct an effective pre-training for RepresentThemAll
before fine-tuning it, making the model fully understand bug

report related knowledge, thus bringing state-of-the-art results.

In bug priority prediction, we focus on weighted average

Fa-score and accuracy to measure all models. In terms of

weighted average F1-score, RepresentThemAll outper-

forms PPWGCN, word2vec, and cPur by 22.93%, 35.64%,

and 30.46%. In terms of accuracy, the improvements are

35.49%, 20.97%, and 14.97%. Diving into the model’s per-

formance on every priority label, we can find that each model

has a relatively low F1-score on priority label P4. Particu-

larly, word2vec and cPur can hardly make any effective

prediction for bug reports with P4 priority. According to our

investigation, we find the potential reason is that P4 is a rare

priority label, which causes the label imbalance problem. Since

PPWGCN introduces the weighted loss function to alleviate the

label imbalance problem, it achieves a 7.87% F1-score on the

prediction of P4 priority. As for RepresentThemAll, we

further pre-train it with “find yourself ” objective when finish-

ing pre-training with the dynamic masked language model, to

fully learn the semantic differences between bug reports. As a

result, fine-tuned RepresentThemAll achieves the highest

F1-score on the prediction of P4 priority and outperforms

PPWGCN by 89.07%.

In bug severity prediction, we focus on weighted average

F1-score and accuracy to measure all models. In terms of

weighted average F1-score, RepresentThemAll outper-

forms PPWGCN, DNNSPBP, and BSP-QASO by large mar-

gins in terms of these two metrics (from 9.48 to 12.31

points). The reason is that, during the pre-training phase,

RepresentThemAll has fully learned the semantic dif-

ference between bug reports, which helps it distinguish bug

reports with different severity in the fine-tuning phase. In ad-

dition to the best overall performance, RepresentThemAll
also achieves state-of-the-art results in the prediction of each

severity label.
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The above experimental results show that

RepresentThemAll can effectively be applied to

multiple downstream tasks. When considering the complexity,

RepresentThemAll successfully replaces multiple

models and works for multiple downstream tasks, thus

RepresentThemAll has a lower complexity when

constructing an automated software maintenance system. As

for cost, training RepresentThemAll requires less cost

than training multiple models since we need not perform

repeated training for different tasks, and fine-tuning has a low

training cost. Moreover, as we just use one model for different

downstream tasks, the compatibility problem generated by

using multiple models is not in RepresentThemAll.

Answer to RQ1: As a universal approach,

RepresentThemAll can replace existing

approaches to handle different downstream tasks

in software maintenance.

B. Answer to RQ2: Effectiveness Comparison of Different
PLMs

Table VI presents the results of the baseline PLMs on four

downstream tasks. Due to the limited space, we focus on two

main evaluation metrics to measure each PLM and put the

completed results into our GitHub repository.

From Tabel VI, we find that RepresentThemAll can

only deliver slight performance improvement (less than 1

point in terms of F1-score and accuracy) for duplicate

bug report detection compared with the baseline PLMs.

The reason is that the accuracy and F1-score of all base-

line PLMs exceed 96%, so it is difficult to obtain a sig-

nificant performance improvement. In bug priority predic-

tions, RepresentThemAll outperforms BERT, RoBERTa,

CodeBERT, and seBERT by 2.73, 1.98, 2.37, and 2.11

points in terms of weighted average F1-score. In terms

of accuracy, the improvements become 3.03, 2.41, 2.74,

and 0.71 points. In bug severity prediction, Repres-
entThemAll outperforms BERT, RoBERTa, CodeBERT,

and seBERT by 4.09, 3.87, 3.68, and 4.03 points in

terms of weighted average F1-score. In terms of ac-

curacy, the improvements become 4.10, 3.86, 3.82, and

4.11 points. RepresentThemAll brings similar perfor-

mance to these two tasks since they are both multi-

classification tasks with five categories. Besides, the con-

siderable performance gain also supports the effectiveness

of two pre-training objectives, especially “find yourself ”

that lets RepresentThemAll learn the semantic differ-

ences between bug reports, which helps the model to iden-

tify bug reports with different labels. In bug report sum-

marization, RepresentThemAll brings a noteworthy im-

provement. Specifically, RepresentThemAll outperforms

BERT, RoBERTa, CodeBERT, and seBERT by large margins

(3.81 to 12.66 and 1.89 to 9.4) in terms of ROUGE-2 and com-

posite BLEU, respectively. This is because the generation task

is more difficult than the classification task and has a higher
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Fig. 7. Results on downstream tasks with different dropout rate settings. BPP,
BSP, BRS, and DBRD denote bug priority prediction, bug severity prediction,
bug report summary, and duplicate bug report detection.

requirement for the contextual information of bug reports.

However, PLMs in other fields do not learn the contextual

knowledge of bug reports in the pre-training phase, which

cannot be compensated by fine-tuning alone. We fully pre-

train RepresentThemAll with two carefully designed pre-

training objectives, which help it effectively obtain contextual

knowledge of bug reports in the pre-training phase, providing

effective enough contextual information to the subsequent fine-

tuning.

Answer to RQ2: By comparison with the baseline

PLMs, RepresentThemAll can learn the domain

knowledge related to bug reports in the pre-training

phase, which enables it to gain even better performance

on four downstream tasks.

C. Answer to RQ3: Ablation Study

Table VII shows the results of RepresentThemAllon

four downstream tasks when we pre-train it from scratch

without “find yourself ” objective and Fig. 7 presents the results

of RepresentThemAll on four downstream tasks when

setting different dropout rate for “find yourself ” objective.

In Table VII, due to limited space, we focus on ROUGE-

2 and composite BLEU to measure models in bug report

summarization, F1-score and accuracy to measure models

in duplicate bug report detection, and weighted average F1-

score and accuracy to measure models in bug priority and

severity predictions. Specifically, we can observe that except

for duplicate bug report detection, “find yourself ” objective

can bring at least one point improvement to all downstream

tasks, which supports its effectiveness.

In Fig. 7, we focus on ROUGE-1 to measure models in bug

report summarization and focus on accuracy to measure mod-

els in duplicate bug report detection, bug priority prediction,

and bug severity prediction. From the figure, we can find that
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TABLE VI
RESULTS OF PLMS ON FOUR DOWNSTREAM TASKS.

-
Bug report summary Duplicate bug report detection Bug priority prediction Bug severity prediction
ROUGE-2 c.B. F% Accuracy% W.avg. F% Accuracy% W.avg. F% Accuracy%

RTA 20.57 10.13 98.54 97.88 72.69 73.49 64.73 64.72
BERT 7.91 0.73 98.26 97.47 69.96 70.46 60.64 60.62

RoBERTa 16.76 8.24 98.22 97.43 70.71 71.08 60.86 60.86
CodeBERT 16.30 7.74 97.91 96.98 70.32 70.75 61.05 60.90
seBERT 16.05 4.19 98.10 97.25 70.58 72.78 60.70 60.61

TABLE VII
RESULTS OF ABLATION STUDY ON DOWNSTREAM TASKS.

-
Bug report summary Duplicate bug report detection Bug priority prediction Bug severity prediction
ROUGE-2 c.B. F% Accuracy% W.avg. F% Accuracy% W.avg. F% Accuracy%

RTA 20.57 10.13 98.54 97.88 72.69 73.49 64.73 64.72

w/o “find yourself ” 18.36 9.10 98.43 97.61 71.52 72.36 62.51 62.55

as dropout rate increases, “find yourself ” can bring continuous

performance improvement for RepresentThemAll on four

downstream tasks. When dropout rate exceeds 0.2, the perfor-

mance of RepresentThemAll starts to degrade. As dropout
rate reaches 0.7, RepresentThemAll’s performance on all

downstream tasks is degraded by more than 10 points. Setting

dropout rate to a large value means that the model needs to

drop out much contextual information of bug reports. Conse-

quently, the two representations of one bug report generated

from the siamese RepresentThemAll network may not

be semantically similar again. To better explain the above

problem, we take a simple example. There is a sentence

“Fading is true while flowering is past.”. We mask half of

the words in it twice and the words masked twice cannot be

the same:

• [MASK] is [MASK] while [MASK] is past.

• Fading [MASK] true while [MASK] is [MASK].

Although these two masked sentences are identical, it is

hard for us to regard them as semantically similar sentences.

Therefore, a high dropout rate means that when pre-training

RepresentThemAll with “find yourself ” objective, it is

difficult to find the input bug report itself from a set of negative

bug reports, which severely hurts the model’s representation

learning ability. Additionally, the generation task is more

sensitive to the dropout rate since our model performs no

effect when the dropout rate reaches 0.4. This is because the

generation task has a higher requirement of context learning

ability for the model, while a high dropout rate may signifi-

cantly impair the context modeling ability of the model due

to introducing a large noise.

VI. THREATS TO VALIDITY

The conclusion of this paper suffers from several threats

to validity. A key threat to the internal validity is the

hyperparameter setting we used to pre-train and fine-tune

RepresentThemAll. A mitigating factor is that most pa-

rameters in the pre-training and fine-tuning phases were re-

ported in other prior reputable literature as recommended or

optimal [18], [52], and we also perform a study on other

important parameters.

A threat to the external validity is that we only use bug

reports from the Bugzilla platform to conduct our experiments.

Actually, there are some other bug tracking systems, like Trac4,

thus we cannot make sure that RepresentThemAll still

performs well if we use bug reports from these platforms. A

mitigating factor is that bug reports in these platforms also

contain the Summary and Description elements, and we only

use the textual information from these two elements to pre-

train and fine-tune RepresentThemAll.

VII. CONCLUSION

In this paper, we propose RepresentThemAll, which

can learn the universal representation of bug reports, serv-

ing multiple software maintenance tasks associated with bug

reports. To learn effective representation for tine-tuning, we

construct RepresentThemAll by stacking multiple Trans-

former encoder layers and pre-train it with two carefully de-

signed objectives: dynamic masked language model and “find
yourself ”. We evaluate RepresentThemAll by fine-tuning

it on four software maintenance tasks associated with bug

reports. The results show that RepresentThemAll outper-

forms all baseline approaches on these four downstream tasks.

We also demonstrate that RepresentThemAll is more

effective than PLMs in other fields for software maintenance

tasks associated with bug reports. In the future, we plan to

develop a RepresentThemAll based software maintenance

system that simultaneously serves multiple tasks.
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